Publications by authors named "Slomp C"

Article Synopsis
  • * The study examined how backwashing impacts the microbial community and chemical composition in a dual-media filter of anthracite and sand while tracking the removal efficiency of Fe, Mn, and NH over time.
  • * Results showed that backwashing improved Fe removal efficiency and led to a mixed microbial community across the filter layers, with specific microorganisms playing key roles in oxidation and nitrification processes.
View Article and Find Full Text PDF

Rapidly spreading industrialization since the 19th century has led to a drastic increase in trace metal deposition in coastal sediments. Provided that these trace metals have remained relatively immobile after deposition, their sedimentary enrichments can serve as records of local-regional pollution histories. Factors controlling this proxy potential include trace metal geochemistry (carrier-, and host phase affinity), and depositional environmental factors (redox variability, particulate shuttling, organic matter loading, bathymetry).

View Article and Find Full Text PDF

Coastal zones account for 75% of marine methane emissions, despite covering only 15% of the ocean surface area. In these ecosystems, the tight balance between methane production and oxidation in sediments prevents most methane from escaping into seawater. However, anthropogenic activities could disrupt this balance, leading to an increased methane escape from coastal sediments.

View Article and Find Full Text PDF

Coastal environments are a major source of marine methane in the atmosphere. Eutrophication and deoxygenation have the potential to amplify the coastal methane emissions. Here, we investigate methane dynamics in the eutrophic Stockholm Archipelago.

View Article and Find Full Text PDF

Although marine environments represent huge reservoirs of the potent greenhouse gas methane, they currently contribute little to global net methane emissions. Most of the methane is oxidized by methanotrophs, minimizing escape to the atmosphere. Aerobic methanotrophs oxidize methane mostly via the copper (Cu)-bearing enzyme particulate methane monooxygenase (pMMO).

View Article and Find Full Text PDF

In coastal waters, methane-oxidizing bacteria (MOB) can form a methane biofilter and mitigate methane emissions. The metabolism of these MOBs is versatile, and the resilience to changing oxygen concentrations is potentially high. It is still unclear how seasonal changes in oxygen availability and water column chemistry affect the functioning of the methane biofilter and MOB community composition.

View Article and Find Full Text PDF

Internal phosphorus (P) loading is a key water quality challenge for shallow lakes. Addition of iron (Fe) salts has been used to enhance P retention in lake sediments. However, its effects on sediment geochemistry are poorly studied, albeit pivotal for remediation success.

View Article and Find Full Text PDF

Anthropogenic activities are influencing aquatic environments through increased chemical pollution and thus are greatly affecting the biogeochemical cycling of elements. This has increased greenhouse gas emissions, particularly methane, from lakes, wetlands, and canals. Most of the methane produced in anoxic sediments is converted into carbon dioxide by methanotrophs before it reaches the atmosphere.

View Article and Find Full Text PDF

Parents of children with 22q11.2 deletion syndrome (22q11DS) report concern about the psychiatric manifestations of the condition, but typically receive little information about this in clinical encounters and instead find information about it elsewhere. We developed an educational booklet about the psychiatric manifestations of 22q11DS and assessed its utility among parents of children with the condition.

View Article and Find Full Text PDF

Methane is a powerful greenhouse gas that is produced in large quantities in marine sediments. Microbially mediated oxidation of methane in sediments, when in balance with methane production, prevents the release of methane to the overlying water. Here, we present a gene-based reactive transport model that includes both microbial and geochemical dynamics and use it to investigate whether the rate of growth of methane oxidizers in sediments impacts the efficiency of the microbial methane filter.

View Article and Find Full Text PDF

Rapid sand filtration is a common method for removal of iron (Fe), manganese (Mn) and ammonium (NH) from anoxic groundwaters used for drinking water production. In this study, we combine geochemical and microbiological data to assess how filter age influences Fe, Mn and NH removal in dual media filters, consisting of anthracite overlying quartz sand, that have been in operation for between ∼2 months and ∼11 years. We show that the depth where dissolved Fe and Mn removal occurs is reflected in the filter medium coatings, with ferrihydrite forming in the anthracite in the top of the filters (< 1 m), while birnessite-type Mn oxides are mostly formed in the sand (> 1 m).

View Article and Find Full Text PDF

The potential and drivers of microbial methane removal in the water column of seasonally stratified coastal ecosystems and the importance of the methanotrophic community composition for ecosystem functioning are not well explored. Here, we combined depth profiles of oxygen and methane with 16S rRNA gene amplicon sequencing, metagenomics and methane oxidation rates at discrete depths in a stratified coastal marine system (Lake Grevelingen, The Netherlands). Three amplicon sequence variants (ASVs) belonging to different genera of aerobic Methylomonadaceae and the corresponding three methanotrophic metagenome-assembled genomes (MOB-MAGs) were retrieved by 16S rRNA sequencing and metagenomic analysis, respectively.

View Article and Find Full Text PDF

Frontal darkened teeth have shown to be one of the most challenging treatments for esthetic dentistry in recent years. This case report, along with a 30-month follow-up, describes the application of a partial ceramic veneer, restricted to the mid-cervical third region, made in the upper left central incisor darkened by trauma. The procedure consisted of maintenance of the entire incisal face, as well as esthetic and morphological rehabilitation of the smile line with veneers and ultra-thin partial ceramic veneers.

View Article and Find Full Text PDF

Background: Epitope compatibility in deceased donor kidney allocation is an emerging area of precision medicine (PM), seeking to improve compatibility between donor kidneys to transplant candidates in the hope of avoiding kidney rejection. Though the potential benefits of using epitope compatibility are promising, the implied modification of deceased organ allocation criteria requires consideration of significant clinical and ethical trade-offs. As a matter of public policy, these trade-offs should consider public values and preferences.

View Article and Find Full Text PDF

Objectives: Little is known about the relationships between sex of infant, disappointment with sex of infant, and risk for perinatal depression, particularly in societies where the nature of parental sex preference is thought to be "balanced" between male and female offspring. We sought to explore relationships between these variables in a North American population.

Methods: In this exploratory study, we used data from a large Canadian prospective longitudinal study in which data were collected at up to four timepoints: during pregnancy, and at 1 week, 1 month and 3 months postpartum.

View Article and Find Full Text PDF

Objectives: With increasing evidence for the clinical utility of pharmacogenomic (PGx) testing for depression, there is a growing need to consider issues related to the clinical implementation of this testing. The perspectives of key stakeholders (both people with lived experience [PWLE] and providers) are critical, but not frequently explored. The purpose of this study was to understand how PWLE and healthcare providers/policy experts (P/HCPs) perceive PGx testing for depression, to inform the consideration of clinical implementation within the healthcare system in British Columbia (BC), Canada.

View Article and Find Full Text PDF

The Paleocene-Eocene Thermal Maximum (PETM) is recognized globally by a negative excursion in stable carbon isotope ratios (δC) in sedimentary records, termed the carbon isotope excursion (CIE). Based on the CIE, the cause, duration, and mechanisms of recovery of the event have been assessed. Here, we focus on the role of increased organic carbon burial on continental margins as a key driver of CO drawdown and global exogenic δC during the recovery phase.

View Article and Find Full Text PDF

Hypoxia has occurred intermittently in the Baltic Sea since the establishment of brackish-water conditions at ∼8,000 years B.P., principally as recurrent hypoxic events during the Holocene Thermal Maximum (HTM) and the Medieval Climate Anomaly (MCA).

View Article and Find Full Text PDF

Enhanced recycling of phosphorus as ocean deoxygenation expanded under past greenhouse climates contributed to widespread organic carbon burial and drawdown of atmospheric CO. Redox-dependent phosphorus recycling was more efficient in such ancient anoxic marine environments, compared to modern anoxic settings, for reasons that remain unclear. Here, we show that low rates of apatite authigenesis in organic-rich sediments can explain the amplified phosphorus recycling in ancient settings as reflected in highly elevated ratios of organic carbon to total phosphorus.

View Article and Find Full Text PDF

Genetic services have historically been housed in tertiary care, requiring referral, which can present access barriers. While integrating genetics into primary care could facilitate access, many primary care physicians lack genomics expertise. Integrating genetic counsellors (GCs) into primary care could theoretically address these issues, but little is known about how to do this effectively.

View Article and Find Full Text PDF

Objective: To develop a theoretical model to explain how parents think about the process of communicating with their affected child about the psychiatric manifestations of 22q11DS.

Methods: Semi-structured interviews were conducted with parents of children with 22q11DS, who had all received psychiatric genetic counseling. Interviews were recorded, transcribed verbatim, and analyzed concurrently with data collection, using interpretive description.

View Article and Find Full Text PDF

Coastal waters worldwide suffer from increased eutrophication and seasonal bottom water hypoxia. Here, we assess the dynamics of iron (Fe), manganese (Mn), and phosphorus (P) in sediments of the eutrophic, brackish Gulf of Finland populated by cable bacteria. At sites where bottom waters are oxic in spring, surface enrichments of Fe and Mn oxides and high abundances of cable bacteria were observed in sediments upon sampling in early summer.

View Article and Find Full Text PDF

Depression during pregnancy affects 10-15% of women, and 5% of women take antidepressants during pregnancy. Clinical guidelines provide recommendations for selective serotonin reuptake inhibitor (SSRI) drug choice and dose based on CYP2D6 and CYP2C19 genotype; however, they are based on evidence from non-pregnant cohorts. This study aimed to test the hypothesis that women with function-altering variants (increased, decreased, or no function) in these pharmacogenes, taking SSRIs prenatally, would have more depression symptoms than women whose pharmacogenetic variants are associated with normal SSRI metabolism.

View Article and Find Full Text PDF

Individuals with 22q11.2 deletion syndrome (22qDS) have a 25%-41% risk for a psychotic disorder. Although early intervention for psychiatric conditions leads to the best long-term outcomes, healthcare providers often provide inadequate information about these issues and psychiatric services are underused by this population.

View Article and Find Full Text PDF