The generic term "Gill disease" refers to a wide range of disorders that affect the gills and severely impact salmonid aquaculture systems worldwide. In rainbow trout freshwater aquaculture, various etiological agents causing gill diseases have been described, particularly Flavobacterium and Amoeba species, but research studies suggest a more complex and multifactorial aetiology. Here, a cohort of rainbow trout affected by gill disease is monitored both through standard laboratory techniques and 16S rRNA Next-Generation Sequencing (NGS) analysis during a natural disease outbreak and subsequent antibiotic treatment with Oxytetracycline.
View Article and Find Full Text PDFFreshwater ecosystems play a key role in global diversity and are subject to a series of anthropic impacts, often leading to biodiversity loss. The organisms inhabiting these sites continuously release DNA into the environment through cells, excrement, gametes and/or decomposing matter; thus, evaluation of this eDNA could revolutionize the monitoring of biodiversity. In this study, environmental DNA metabarcoding was used for the first time in three Sicilian lakes: Lake Poma, Piana degli Albanesi Lake and Lake Scanzano.
View Article and Find Full Text PDFThe aim of this study was to evaluate the ability of DNA metabarcoding, by rbcl as barcode marker, to identify and classify the small traces of plant DNA isolated from raw milk used to produce Grana Padano (GP) cheese. GP is one of the most popular Italian PDO (Protected Designation of Origin) produced in Italy in accordance with the GP PDO specification rules that define which forage can be used for feeding cows. A total of 42 GP bulk tank milk samples were collected from 14 dairies located in the Grana Padano production area.
View Article and Find Full Text PDFAdaptive Laboratory Evolution (ALE) is a powerful tool to improve the fitness of industrially relevant microorganisms, because it circumvents some of the problems related to the use of genetically modified strains. In this study, we used an ALE strategy involving serial batch cultivations in aerobic and respiratory conditions to generate spontaneous mutants from the respiration-competent strain Lacticaseibacillus casei N87. Genotypic changes in selected mutants were investigated using whole genome sequencing (WGS).
View Article and Find Full Text PDFVirus detection is a crucial step for the implementation of clean stock programs that preserve healthy crop species. Viral infections in grapevine, a vegetatively propagated perennial crop, cannot be eradicated from the vineyards by the application of agrochemicals and must be curtailed at the stage of nursery production during the propagation of planting material. Viral detection is routinely performed using enzyme-linked immunosorbent assays (ELISA) or Reverse Transcription-quantitative Polymerase Chain Reactions (RT-qPCR).
View Article and Find Full Text PDFThe emergence of new SARS-CoV-2 variants and their rapid spread pose a threat to both human and animal health and may conceal unknown risks. This report describes an Italian human-to-cat outbreak of SARS-CoV-2 lineage B.1.
View Article and Find Full Text PDFA MSH6 3'UTR variant (c.*23_26dup) was found in 13 unrelated families consulted for Lynch/Muir-Torre Syndrome. This variant, which is very rare in the genomic databases, was absent in healthy controls and strongly segregated with the disease in the studied pedigrees.
View Article and Find Full Text PDFLow-grade gliomas (LGG) are infiltrative primary brain tumors that in 70% of the cases undergo anaplastic transformation, deeply affecting prognosis. However, the timing of progression is heterogeneous. Recently, the tumor microenvironment (TME) has gained much attention either as prognostic factor or therapeutic target.
View Article and Find Full Text PDFBackground: We evaluated the functional capacity of plantaricin-producing Lactobacillus plantarum SF9C and S-layer-carrying Lactobacillus brevis SF9B to withstand gastrointestinal transit and to compete among the gut microbiota in vivo. Considering the probiotic potential of Lb. brevis SF9B, this study aims to investigate the antibacterial activity of Lb.
View Article and Find Full Text PDFThe microbiota of different types of Italian high-moisture Mozzarella cheese produced using cow or buffalo milk, acidified with natural or selected cultures, and sampled at the dairy or at the mass market, was evaluated using a Next Generation Sequencing approach, in order to identify possible drivers of the bacterial diversity. Cow Mozzarella and buffalo Mozzarella acidified with commercial cultures were dominated by Streptococcus thermophilus, while buffalo samples acidified with natural whey cultures showed similar prevalence of L. delbrueckii subsp.
View Article and Find Full Text PDFShotgun metagenomics sequencing is a powerful tool for the characterization of complex biological matrices, enabling analysis of prokaryotic and eukaryotic organisms and viruses in a single experiment, with the possibility of reconstructing the whole metagenome or a set of genes of interest. One of the main factors limiting the use of shotgun metagenomics on wide scale projects is the high cost associated with the approach. We set out to determine if it is possible to use shallow shotgun metagenomics to characterize complex biological matrices while reducing costs.
View Article and Find Full Text PDFArthropod vectors are responsible for the transmission of human pathogens worldwide. Several arthropod species are bird ectoparasites, however, no study to date has characterized their microbiota as a whole. We sampled hematophagous ectoparasites that feed on migratory birds and performed 16S rRNA gene metabarcoding to characterize their microbial community.
View Article and Find Full Text PDFBackground: While recent genome-wide association studies have suggested novel low-grade glioma (LGG) stratification models based on a molecular classification, we explored the potential clinical utility of patient-derived cells. Specifically, we assayed glioma-associated stem cells (GASC) that are patient-derived and representative of the glioma microenvironment.
Methods: By next-generation sequencing, we analyzed the transcriptional profile of GASC derived from patients who underwent anaplastic transformation either within 48 months (GASC-BAD) or ≥7 years (GASC-GOOD) after surgery.
A series of simplex cases have been reported under various diagnoses sharing early aging, especially evident in congenitally decreased subcutaneous fat tissue and sparse hair, bone dysplasia of the skull and fingers, a distinctive facial gestalt, and prenatal and postnatal growth retardation. For historical reasons, we suggest naming the entity Fontaine syndrome. Exome sequencing of four unrelated affected individuals showed that all carried the de novo missense variant c.
View Article and Find Full Text PDFMammalian apurinic/apyrimidinic endonuclease 1 is a DNA repair enzyme involved in genome stability and expression of genes involved in oxidative stress responses, tumor progression and chemoresistance. However, the molecular mechanisms underlying the role of apurinic/apyrimidinic endonuclease 1 in these processes are still unclear. Recent findings point to a novel role of apurinic/apyrimidinic endonuclease 1 in RNA metabolism.
View Article and Find Full Text PDFRNA binding proteins (RBPs) play a central role in cell physiology and pathology. Among them, HuR is a nuclear RBP, which shuttles to the cytoplasm to allow its RNA targets processing. HuR over-expression and delocalization are often associated to cell transformation.
View Article and Find Full Text PDFThe discovery of new protein-coding DNA variants related to carcass traits is very important for the Italian pig industry, which requires heavy pigs with higher thickness of subcutaneous fat for Protected Designation of Origin (PDO) productions. Exome capture techniques offer the opportunity to focus on the regions of DNA potentially related to the gene and protein expression. In this research a human commercial target enrichment kit was used to evaluate its performances for pig exome capture and for the identification of DNA variants suitable for comparative analysis.
View Article and Find Full Text PDFAutosomal-dominant lateral temporal epilepsy (ADLTE) is a genetic epilepsy syndrome clinically characterized by focal seizures with prominent auditory symptoms. ADLTE is genetically heterogeneous, and mutations in LGI1 account for fewer than 50% of affected families. Here, we report the identification of causal mutations in reelin (RELN) in seven ADLTE-affected families without LGI1 mutations.
View Article and Find Full Text PDFPurpose: To describe the clinical findings in a family with a benign form of mesial temporal lobe epilepsy and to identify the causative genetic factors.
Methods: All participants were personally interviewed and underwent neurologic examination. The affected subjects underwent EEG and most of them neuroradiological examinations (MRI).
Since the early 20th century, barley (Hordeum vulgare) has been a model for investigating the effects of physical and chemical mutagens and for exploring the potential of mutation breeding in crop improvement. As a consequence, extensive and well-characterized collections of morphological and developmental mutants have been assembled that represent a valuable resource for exploring a wide range of complex and fundamental biological processes. We constructed a collection of 881 backcrossed lines containing mutant alleles that induce a majority of the morphological and developmental variation described in this species.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is an autosomal recessive disease caused in about 95% of SMA patients by homozygous deletion of the survival motor neuron 1 (SMN1) gene or its conversion to the highly homologous SMN2 gene. In the majority of cases, disease severity correlates inversely with increased SMN2 copy number. Because of the comparatively high incidence of healthy carriers and severity of the disease, detection of sequence alterations and quantification of SMN1 and SMN2 copy numbers are essential for exact diagnosis and genetic counselling.
View Article and Find Full Text PDFThe identification of genes underlying complex quantitative traits such as grain yield by means of conventional genetic analysis (positional cloning) requires the development of several large mapping populations. However, it is possible that phenotypically related, but more extreme, allelic variants generated by mutational studies could provide a means for more efficient cloning of QTLs (quantitative trait loci). In barley (Hordeum vulgare), with the development of high-throughput genome analysis tools, efficient genome-wide identification of genetic loci harbouring mutant alleles has recently become possible.
View Article and Find Full Text PDFTo understand better enzyme/DNA interactions and to design innovative detectors based on DNA nanoarrays, we need to study the effect of nanometric confinement on the biochemical activity of the DNA molecules. We focus on the study of the restriction enzyme reactions (DpnII) within DNA nanostructures on flat gold films by atomic force microscopy (AFM). Typically we work with a few patches of DNA self assembled monolayers (SAMs) that are hundred nm in size and are lithographically fabricated within alkylthiol SAMs by AFM nanografting.
View Article and Find Full Text PDFIn the present study, we analysed allele-specific expression (ASE) in the selfing species barley to assess the frequency of cis-acting regulatory variation and the effects of genetic background, developmental differences and drought stress on allelic expression levels. We measured ASE ratios in 30 genes putatively involved in stress responses in five hybrids and their reciprocals, namely Hordeum spontaneum 41-1/Alexis (HAl), Hordeum spontaneum 41-1/Arta (HAr), Sloop/WI3408 (SW), Tadmor/Sloop (TS) and Tadmor/WI3408 (TW). In order to detect cis-acting variation related to drought and developmental changes, the barley hybrids were grown under control and water-limited conditions, and leaf tissue was harvested at two developmental stages.
View Article and Find Full Text PDFFlowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 (Vgt1), to an approximately 2-kb noncoding region positioned 70 kb upstream of an Ap2-like transcription factor that we have shown to be involved in flowering-time control.
View Article and Find Full Text PDF