This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction between fibronectin molecules and the titanium surface is expected to be more efficient for a high surface charge density, resulting in facilitated integrin mediated osteoblast adhesion.
View Article and Find Full Text PDFOperative fixation of fragments in acetabular fracture treatment is not strong enough to allow weight bearing before the bone is healed. In some patients, even passive or active nonweight-bearing exercises could lead to dislocation of fragments and posttraumatic osteoarthritis. Therefore, early rehabilitation should avoid loading the acetabulum in the regions of fracture lines.
View Article and Find Full Text PDFTubular budding of the erythrocyte membrane may be induced by exogenously added substances. It is shown that tubular budding may be explained by self-assembly of anisotropic membrane nanodomains into larger domains forming nanotubular membrane protrusions. In contrast to some previously reported theories, no direct external mechanical force is needed to explain the observed tubular budding of the bilayer membrane.
View Article and Find Full Text PDFConf Proc IEEE Eng Med Biol Soc
June 2007
Sequential model of liver tissue electropermeabilisation around two needle electrodes was designed by computing electric field (E) distribution by means of the finite element (FE) method. Sequential model consists of a sequence of static FE models which represent E distribution during tissue permeabilisation. In the model an S-shaped dependency between specific conductivity and E was assumed.
View Article and Find Full Text PDFPositively charged proteins can attach themselves to the negatively charged outer surface of biological cell membranes and liposomes. In this work, the influence of the intrinsic shape of the membrane-attached proteins on the elastic properties of the membrane is considered theoretically. It is shown that attachment of anisotropic proteins to the outer surface of biological membranes may induce tubulation of the membrane.
View Article and Find Full Text PDFPermeabilization, when observed on a tissue level, is a dynamic process resulting from changes in membrane permeability when exposing biological cells to external electric field (E). In this paper we present a sequential finite element model of E distribution in tissue which considers local changes in tissue conductivity due to permeabilization. These changes affect the pattern of the field distribution during the high voltage pulse application.
View Article and Find Full Text PDFThe physical properties of organic nanotubes attract increasing attention due to their potential benefit in technology, biology and medicine. We study the effect of ion size on the electrical properties of cylindrical nanotubes filled with electrolyte solution within a modified Poisson-Boltzmann (PB) approach. For comparison purposes, small hollow nanospheres filled with electrolyte solution are considered.
View Article and Find Full Text PDFClin Biomech (Bristol)
November 2004
Background: High contact hip stress is believed to be one of the key biomechanical factors involved in the hip cartilage degeneration and osteoarthritis. Accordingly, with increasing age high contact hip stress is expected to cause elimination of subjects from the population of healthy hips, but its predictive value has not been evaluated so far. The objective of the paper is to investigate whether the exposure of healthy hips to estimated high contact hip stress is related to the development of hip pathology with increasing age.
View Article and Find Full Text PDFBioelectrochemistry
June 2004
Giant unilamellar phospholipid vesicles were prepared by the method of electroformation from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC). We studied the influence of different concentrations of the surfactant octaethyleneglycol dodecylether (C(12)E(8)) on the spontaneous shape transformations of POPC vesicles at room temperature. In accordance with previous results, we observed that low concentration of C(12)E(8) increased the speed of the characteristic vesicle shape transformation, starting from the initial shape with thin tubular protrusion, through beaded protrusion where the number of beads gradually decreased, to final spherical shapes with invagination, whereby the average mean curvature of the vesicle membrane monotonously decreased.
View Article and Find Full Text PDFA crucial part of image-guided therapy is registration of preoperative and intraoperative images, by which the precise position and orientation of the patient's anatomy is determined in three dimensions. This paper presents a novel approach to register three-dimensional (3-D) computed tomography (CT) or magnetic resonance (MR) images to one or more two-dimensional (2-D) X-ray images. The registration is based solely on the information present in 2-D and 3-D images.
View Article and Find Full Text PDFThe effect of counterion size on the electrical properties of an electrolyte solution in contact with charged planar, cylindrical and spherical surfaces is considered. Electrostatic interaction is considered by means of the mean electrostatic field, while the finite size of particles constituting the electrolyte solution is considered via the excluded volume effect within the lattice statistics. Different sizes of counterion are described by different values of the lattice constant.
View Article and Find Full Text PDFA simple statistical mechanical approach is applied to calculate the profile of the density of the number of particles and the profile of the electrostatic potential of an electric double layer formed by a charged cylindrical surface in contact with electrolyte solution. The finite size of particles constituting the electrolyte solution is considered by including the excluded volume effect within the lattice statistics while the electrostatic interactions are considered by means of the mean electrostatic field. It is shown that the excluded volume effect decreases the density of the number of counterions and increases the electrostatic potential near the charged cylindrical surface.
View Article and Find Full Text PDFUsing finite-element method (FEM) effective conductivity of cell suspension was calculated for different cell volume fractions and membrane conductivities. Cells were modeled as spheres having equivalent conductivity and were organized in cubic lattices, layers and clusters. The results were compared to different analytical expressions for effective conductivity and they showed that Maxwell theory is valid also for higher volume fractions.
View Article and Find Full Text PDF