IL-8 (aka interleukin 8, CXCL8) is a prototypic cytokine that is highly expressed in the diseased vessel wall and its plasma concentration is strongly associated with cardiovascular events. However, whether IL-8 plays a causative role in cardiovascular diseases remains largely unknown. In this study we used a human IL-8 transgenic (Tg) mouse strain with a bacterial artificial chromosome (BAC) integrated into its genome.
View Article and Find Full Text PDFAll current smooth muscle cell (SMC) mice similarly recombine floxed alleles in vascular and visceral SMCs. Here, we present an knock-in mouse and compare its activity with a mouse. Both drivers demonstrate equivalent recombination in vascular SMCs.
View Article and Find Full Text PDFRationale: Epidemiological studies suggest that individuals in the Mediterranean region with deficiency of glucose-6-phosphate dehydrogenase (G6PD) are less susceptible to cardiovascular diseases. However, our knowledge regarding the effects of G6PD deficiency on pathogenesis of vascular diseases caused by factors, like angiotensin II (Ang-II), which stimulate synthesis of inflammatory cytokines and vascular inflammation, is lacking. Furthermore, to-date the effect of G6PD deficiency on vascular health has been controversial and difficult to experimentally prove due to a lack of good animal model.
View Article and Find Full Text PDFBackground: Most single nucleotide variants (SNVs) occur in noncoding sequence where millions of transcription factor binding sites (TFBS) reside. Here, a comparative analysis of CRISPR-mediated homology-directed repair (HDR) versus the recently reported prime editing 2 (PE2) system was carried out in mice over a TFBS called a CArG box in the Tspan2 promoter.
Results: Quantitative RT-PCR showed loss of Tspan2 mRNA in aorta and bladder, but not heart or brain, of mice homozygous for an HDR-mediated three base pair substitution in the Tspan2 CArG box.
Abdominal aortic aneurysm (AAA) is a catastrophic disease with little effective therapy. Myocardin related transcription factor A (MRTFA, MKL1) is a multifaceted transcription factor, regulating diverse biological processes. However, a detailed understanding of the mechanistic role of MKL1 in AAA has yet to be elucidated.
View Article and Find Full Text PDFVascular aging has been documented as a vital process leading to arterial dysfunction and age-related cardiovascular and cerebrovascular diseases. However, our understanding of the molecular underpinnings of age-related phenotypes in the vascular system is incomplete. Here we performed bulk RNA sequencing in young and old mouse aortae to elucidate age-associated changes in the transcriptome.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2019
is a human-specific, vascular cell-enriched long-noncoding RNA (lncRNA) that regulates vascular smooth muscle cell and endothelial cell (EC) phenotypes. The underlying mechanisms of action of in these and other cell types is unknown. Here, levels of RNA are shown to be elevated in several differentiated human EC lineages subjected to laminar shear stress.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2018
Objective- Unreliable antibodies often hinder the accurate detection of an endogenous protein, and this is particularly true for the cardiac and smooth muscle cofactor, MYOCD (myocardin). Accordingly, the mouse Myocd locus was targeted with 2 independent epitope tags for the unambiguous expression, localization, and activity of MYOCD protein. Approach and Results- 3cCRISPR (3-component clustered regularly interspaced short palindromic repeat) was used to engineer a carboxyl-terminal 3×FLAG or 3×HA epitope tag in mouse embryos.
View Article and Find Full Text PDFPodocytes contain an intricate actin cytoskeleton that is essential for the specialized function of this cell type in renal filtration. Serum response factor (SRF) is a master transcription factor for the actin cytoskeleton, but the expression and function of SRF in podocytes are unknown. We found that SRF protein colocalizes with podocyte markers in human and mouse kidneys.
View Article and Find Full Text PDFMegacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a congenital visceral myopathy characterized by severe dilation of the urinary bladder and defective intestinal motility. The genetic basis of MMIHS has been ascribed to spontaneous and autosomal dominant mutations in actin gamma 2 (), a smooth muscle contractile gene. However, evidence suggesting a recessive origin of the disease also exists.
View Article and Find Full Text PDFSerum response factor (SRF) transcriptionally regulates expression of contractile genes in smooth muscle cells (SMC). Lack or decrease of SRF is directly linked to a phenotypic change of SMC, leading to hypomotility of smooth muscle in the gastrointestinal (GI) tract. However, the molecular mechanism behind SRF-induced hypomotility in GI smooth muscle is largely unknown.
View Article and Find Full Text PDFSerum response factor (SRF) is a transcription factor known to mediate phenotypic plasticity in smooth muscle cells (SMCs). Despite the critical role of this protein in mediating intestinal injury response, little is known about the mechanism through which SRF alters SMC behavior. Here, we provide compelling evidence for the involvement of SRF-dependent microRNAs (miRNAs) in the regulation of SMC apoptosis.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
February 2015
Objective: To ascertain the importance of a single regulatory element in the control of Cnn1 expression using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) genome editing.
Approach And Results: The CRISPR/Cas9 system was used to produce 3 of 18 founder mice carrying point mutations in an intronic CArG box of the smooth muscle cell-restricted Cnn1 gene. Each founder was bred for germline transmission of the mutant CArG box and littermate interbreeding to generate homozygous mutant (Cnn1(ΔCArG/ΔCArG)) mice.
Overactive bladder (OAB) is a pervasive clinical problem involving alterations in both neurogenic and myogenic activity. While there has been some progress in understanding neurogenic inputs to OAB, the mechanisms controlling myogenic bladder activity are unclear. We report the involvement of myocardin (MYOCD) and microRNA-1 (miR-1) in the regulation of connexin 43 (GJA1), a major gap junction in bladder smooth muscle, and the collective role of these molecules during post-natal bladder development.
View Article and Find Full Text PDFFor genotyping of transgenic animals, many IACUC guidelines recommend the use of fecal DNA when possible because this approach is non-invasive. Existing methods for extracting fecal DNA may be costly or involve the use of toxic organic solvents. Furthermore, feces contain an abundance of PCR inhibitors that may hinder DNA amplification when they are co-purified with fecal DNA.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
October 2011
Objective: Smooth muscle calponin (CNN1) contains multiple conserved intronic CArG elements that bind serum response factor and display enhancer activity in vitro. The objectives here were to evaluate these CArG elements for activity in transgenic mice and determine the effect of human CNN1 on injury-induced vascular remodeling.
Methods And Results: Mice carrying a lacZ reporter under control of intronic CArG elements in the human CNN1 gene failed to show smooth muscle cell (SMC)-restricted activity.
Retinoids are used clinically to treat a number of hyper-proliferative disorders and have been shown in experimental animals to attenuate vascular occlusive diseases, presumably through nuclear receptors bound to retinoic acid response elements (RARE) located in target genes. Here, we show that natural or synthetic retinoids rapidly induce mRNA and protein expression of a specific isoform of A-Kinase Anchoring Protein 12 (AKAP12β) in cultured smooth muscle cells (SMC) as well as the intact vessel wall. Expression kinetics and actinomycin D studies indicate Akap12β is a retinoid-induced, immediate-early gene.
View Article and Find Full Text PDFLarge conductance calcium-activated potassium (MaxiK) channels play a pivotal role in maintaining normal arterial tone by regulating the excitation-contraction coupling process. MaxiK channels comprise alpha and beta subunits encoded by Kcnma and the cell-restricted Kcnmb genes, respectively. Although the functionality of MaxiK channel subunits has been well studied, the molecular regulation of their transcription and modulation in smooth muscle cells (SMCs) is incomplete.
View Article and Find Full Text PDF