The Malay Archipelago is one of the most biodiverse regions on Earth, but it suffers high extinction risks due to severe anthropogenic pressures. Paleobotanical knowledge provides baselines for the conservation of living analogs and improved understanding of vegetation, biogeography, and paleoenvironments through time. The Malesian bioregion is well studied palynologically, but there have been very few investigations of Cenozoic paleobotany (plant macrofossils) in a century or more.
View Article and Find Full Text PDFThe Covid-19 pandemic has brought forth a major landscape shock in the mobility sector. Due to its recentness, researchers have just started studying and understanding the implications of this crisis on mobility. We contribute by combining mobility data from various sources to bring a novel angle to understanding mobility patterns during Covid-19.
View Article and Find Full Text PDFWith the increase in the digitization efforts of herbarium collections worldwide, dataset repositories such as iDigBio and GBIF now have hundreds of thousands of herbarium sheet images ready for exploration. Although this serves as a new source of plant leaves data, herbarium datasets have an inherent challenge to deal with the sheets containing other non-plant objects such as color charts, barcodes, and labels. Even for the plant part itself, a combination of different overlapping, damaged, and intact individual leaves exist together with other plant organs such as stems and fruits, which increases the complexity of leaf trait extraction and analysis.
View Article and Find Full Text PDFBanks-Leite et al. (2021) claim that our suggestion of preserving ≥ 40% forest cover lacks evidence and can be problematic. We find these claims unfounded, and discuss why conservation planning urgently requires valuable, well-supported and feasible general guidelines like the 40% criterion.
View Article and Find Full Text PDFAgriculture and development transform forest ecosystems to human-modified landscapes. Decades of research in ecology have generated myriad concepts for the appropriate management of these landscapes. Yet, these concepts are often contradictory and apply at different spatial scales, making the design of biodiversity-friendly landscapes challenging.
View Article and Find Full Text PDFNatural history collections and tropical tree diversity are both treasure troves of biological and evolutionary information, but their accessibility for scientific study is impeded by a number of properties. DNA in historical specimens is generally highly fragmented, complicating the recovery of high-grade genetic material. Furthermore, our understanding of hyperdiverse, wide-spread tree assemblages is obstructed by extensive species ranges, fragmented knowledge of tropical tree diversity and phenology, and a widespread lack of species-level diagnostic characters, prohibiting the collecting of readily identifiable specimens which can be used to build, revise or strengthen taxonomic frameworks.
View Article and Find Full Text PDFDespite the extensive, ongoing conversion of tropical forests to rubber plantation, the effects of this land-use change on soil fungal community diversity and composition are still poorly known. We compared a network of sites of tropical forest in southern Yunnan, China, with a network of rubber plantation sites originally derived from this forest. Soil DNA was amplified for ITS2 and sequenced using Illumina MiSeq.
View Article and Find Full Text PDFTropical rainforests play important roles in carbon sequestration and are hot spots for biodiversity. Tropical forests are being replaced by rubber (Hevea brasiliensis) plantations, causing widespread concern of a crash in biodiversity. Such changes in aboveground vegetation might have stronger impacts on belowground biodiversity.
View Article and Find Full Text PDFThe relationship between β-diversity and latitude still remains to be a core question in ecology because of the lack of consensus between studies. One hypothesis for the lack of consensus between studies is that spatial scale changes the relationship between latitude and β-diversity. Here, we test this hypothesis using tree data from 15 large-scale forest plots (greater than or equal to 15 ha, diameter at breast height ≥ 1 cm) across a latitudinal gradient (3-30) in the Asia-Pacific region.
View Article and Find Full Text PDFBackground: is a genus of very small flea beetles living in the leaf litter layer of Asian forests, easily sampled with Winkler extraction. The genus is presumably very rich in species, but their taxonomy is hampered by their small size and morphological uniformity.
New Information: On a 'taxon expedition'-style field course at Kuala Belalong Field Studies Centre in Brunei Darussalam (Borneo), a new species, n.
Our understanding of the patterns of plant diversity in tropical forests and their responses to fragmentation are mostly based on tree surveys. But are these patterns and responses representative of other plant life-forms? We sampled trees, lianas, herbs, and ferns in a fragmented tropical forest landscape in South-west China. We compared community types generated by clustering presence-absence data for the non-tree life-forms with those generated for trees.
View Article and Find Full Text PDFLess than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.
View Article and Find Full Text PDFLittle is known of how soil archaeal community composition and diversity differ between local variants of tropical rainforests. We hypothesized that (1) as with plants, animals, fungi, and bacteria, the soil archaeal community would differ between different variants of tropical forest; (2) that spatially rarer forest variants would have a less diverse archaeal community than common ones; (3) that a history of forest disturbance would decrease archaeal alpha- and beta-diversity; and (4) that archaeal distributions within the forest would be governed more by deterministic than stochastic factors. We sampled soil across several different forest types within Brunei, Northwest Borneo.
View Article and Find Full Text PDFWe analysed the flora of 46 forest inventory plots (25 m x 100 m) in old growth forests from the Amazonian region to identify the role of environmental (topographic) and spatial variables (obtained using PCNM, Principal Coordinates of Neighbourhood Matrix analysis) for common and rare species. For the analyses, we used multiple partial regression to partition the specific effects of the topographic and spatial variables on the univariate data (standardised richness, total abundance and total biomass) and partial RDA (Redundancy Analysis) to partition these effects on composition (multivariate data) based on incidence, abundance and biomass. The different attributes (richness, abundance, biomass and composition based on incidence, abundance and biomass) used to study this metacommunity responded differently to environmental and spatial processes.
View Article and Find Full Text PDFTropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified.
View Article and Find Full Text PDFMetabarcoding potentially offers a rapid and cheap method of monitoring biodiversity, but real-world applications are few. We investigated its utility in studying patterns of litter arthropod diversity and composition in the tropics. We collected litter arthropods from 35 matched forest-plantation sites across Xishuangbanna, southwestern China.
View Article and Find Full Text PDFThere has been little study of whether different variants of tropical rainforest have distinct soil microbial communities and levels of diversity. We compared bacterial and fungal community composition and diversity between primary mixed dipterocarp, secondary mixed dipterocarp, white sand heath, inland heath, and peat swamp forests in Brunei Darussalam, Northwest Borneo by analyzing Illumina Miseq sequence data of 16S rRNA gene and ITS1 region. We hypothesized that white sand heath, inland heath and peat swamp forests would show lower microbial diversity and relatively distinct microbial communities (compared to MDF primary and secondary forests) due to their distinctive environments.
View Article and Find Full Text PDFThe millions of plant specimens that have been collected and stored in Chinese herbaria over the past ~110 years have recently been digitized and geo-referenced. Here we use this unique collection data set for species distribution modeling exercise aiming at mapping &explaining the botanical richness; delineating China's phytogeographical regions and investigating the environmental drivers of the dissimilarity patterns. We modeled distributions of 6,828 woody plants using MaxEnt and remove the collection bias using null model.
View Article and Find Full Text PDFThe high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2014
The extent of Dipterocarp rainforests on the emergent Sundaland landmass in Southeast Asia during Quaternary glaciations remains a key question. A better understanding of the biogeographic history of Sundaland could help explain current patterns of biodiversity and support the development of effective forest conservation strategies. Dipterocarpaceae trees dominate the rainforests of Sundaland, and their distributions serve as a proxy for rainforest extent.
View Article and Find Full Text PDFTropical rainforests in Southeast Asia are facing increasing and ever more intense human disturbance that often negatively affects biodiversity. The aim of this study was to determine how tree species phylogenetic diversity is affected by traditional forest management types and to understand the change in community phylogenetic structure during succession. Four types of forests with different management histories were selected for this purpose: old growth forests, understorey planted old growth forests, old secondary forests (∼200-years after slash and burn), and young secondary forests (15-50-years after slash and burn).
View Article and Find Full Text PDFHainan, the largest tropical island in China, belongs to the Indo-Burma biodiversity hotspot and harbors large areas of tropical forests, particularly in the uplands. The Changhua watershed is the cradle of Hainan's main river and a center of endemism for plants and birds. The watershed contains great habitat diversity and is an important conservation area.
View Article and Find Full Text PDFThe marked biogeographic difference between western (Malay Peninsula and Sumatra) and eastern (Borneo) Sundaland is surprising given the long time that these areas have formed a single landmass. A dispersal barrier in the form of a dry savanna corridor during glacial maxima has been proposed to explain this disparity. However, the short duration of these dry savanna conditions make it an unlikely sole cause for the biogeographic pattern.
View Article and Find Full Text PDFTree species rarely exposed to burning, like in everwet tropical forests, are unlikely to be fire adapted. Therefore, one could hypothesize that these species are affected equally by burning and that tree abundance changes are linked solely to fire behavior. Alternatively, if species do react differentially to burning, abundance changes should be linked to tree habitat preference and morphology.
View Article and Find Full Text PDF