Publications by authors named "Slijepcevic P"

The presumption that experiential consciousness requires a nervous system and brain has been central to the debate on the possibility of developing a conscious form of artificial intelligence (AI). The likelihood of future AI consciousness or devising tools to assess its presence has focused on how AI might mimic brain-centered activities. Currently, dual general assumptions prevail: AI consciousness is primarily an issue of functional information density and integration, and no substantive technical barriers exist to prevent its achievement.

View Article and Find Full Text PDF

Cells represent the basic units of life, not only as structural building blocks, but also as cognitive agents endowed with subjective cellular feelings, sentience (consciousness), and cognitive infocomputatioal competence. Living cells act as 'Kantian Wholes': All of its parts exist for and by means of the whole system, allowing cells to use sentient agency for solving existential problems and evolve as living self-organizing units. Cell sentience is based on its excitable plasma membrane generating bioelectromagnetic fields that link to a whole-cell sensory architecture.

View Article and Find Full Text PDF

Aims: Azacitidine, a drug that epigenetically modifies DNA, is widely used to treat haematological malignancies. However, at low doses, it demethylates DNA, and as a result, can alter gene expression. In our previous publication, we showed that low doses of azacitidine induce telomere length elongation in breast cancer cells.

View Article and Find Full Text PDF

Natural selection has a formal definition as the natural process that results in the survival and reproductive success of individuals or groups best adjusted to their environment, leading to the perpetuation of those genetic qualities best suited to that organism's environmental niche. Within conventional Neo-Darwinism, the largest source of those variations that can be selected is presumed to be secondary to random genetic mutations. As these arise, natural selection sustains adaptive traits in the context of a 'struggle for existence'.

View Article and Find Full Text PDF

Our previous efforts to probe the complex, rich experiential lives of unicellular species have focused on the origins of consciousness (Reber, 2019) and the biomolecular processes that underlie sentience (Reber et al., 2023). Implied, but unexplored, was the assumption that these cognitive functions and associated unicellular organismal behaviors were linked with and often driven by affect, feelings, sensual experiences.

View Article and Find Full Text PDF

Recent papers have emphasized the primary role of cellular information management in biological and evolutionary development. In this framework, intelligent cells collectively measure environmental cues to improve informational validity to support natural cellular engineering as collaborative decision-making and problem-solving in confrontation with environmental stresses. These collective actions are crucially dependent on cell-based memories as acquired patterns of response to environmental stressors.

View Article and Find Full Text PDF

The Cellular Basis of Consciousness (CBC) model of biological consciousness is based on the assumption that life and conscious sentience are coterminus. All living organisms, are conscious, self-aware, and have valenced sensory and perceptual experiences. [Image: see text]

View Article and Find Full Text PDF

A range of studies published in the last few decades promotes the cognitive aspects of life: all organisms, from bacteria to mammals, are capable of sensing/perception, decision-making, problem-solving, learning, and other cognitive functions, including sentience and consciousness. In this paper I present a scientific and philosophical synthesis of these studies, leading to an integrated view of cognitive biology. This view is expressed through the four principles applicable to all living systems: (1) sentience and consciousness, (2) autopoiesis, (3) free energy principle and relational biology, and (4) cognitive repertoire.

View Article and Find Full Text PDF
Article Synopsis
  • We studied how radiation affects chromosome structure and DNA damage in both interphase and metaphase cells from Chinese hamster cells with BRCA2 defects compared to control cells.
  • Our methods involved advanced techniques like FISH and TIF to analyze DNA integrity and telomere functions.
  • Results showed that BRCA2-deficient cells had higher levels of DNA damage at both interstitial and terminal telomeric sites, indicating that BRCA2 plays a crucial role in maintaining telomere stability.
View Article and Find Full Text PDF

All SETI (Search for Extraterrestrial Intelligence) programmes that were conceived and put into practice since the 1960s have been based on anthropocentric ideas concerning the definition of intelligence on a cosmic-wide scale. Brain-based neuronal intelligence, augmented by AI, are currently thought of as being the only form of intelligence that can engage in SETI-type interactions, and this assumption is likely to be connected with the dilemma of the famous Fermi paradox. We argue that high levels of intelligence and cognition inherent in ensembles of bacteria are much more likely to be the dominant form of cosmic intelligence, and the transfer of such intelligence is enabled by the processes of panspermia.

View Article and Find Full Text PDF

Serial Endosymbiosis Theory, or SET, was conceived and developed by Lynn Margulis, to explain the greatest discontinuity in the history of life, the origin of eukaryotic cells. Some predictions of SET, namely the origin of mitochondria and chloroplasts, withstood the test of the most recent evidence from a variety of disciplines including phylogenetics, biochemistry, and cell biology. Even though some other predictions fared less well, SET remains a seminal theory in biology.

View Article and Find Full Text PDF

The possibility that the clouds of Venus are habitats for microorganisms has been discussed for several decades. Over the past two decades evidence to support this point of view has grown with new data from space probes and space exploration. In this article we argue that microorganisms are likely to be widely present in the clouds of Venus, and may under certain conditions have a ready route to Earth.

View Article and Find Full Text PDF

Exchanges of information analogous to a global internet have been known to take place between biological systems on the Earth ranging from bacteria and viruses to plants and animals. We argue that this process can be extended to include a cosmic biosphere within which evolution would seem to be intimately interlinked across astronomical, perhaps cosmological distance scales. Comets and interstellar dust, argued to have a bacterial/viral component, could be involved in establishing these links.

View Article and Find Full Text PDF

The concept of a cosmic virosphere that serves as the repository of information for all life on Earth and throughout the Universe is discussed. Recent studies in geology, astronomy and biology point to an intimate connection between the evolution of life and a cosmic virosphere/biosphere.

View Article and Find Full Text PDF

New molecular cytogenetic biomarkers may significantly contribute to biodosimetry, whose application is still globally diverse and not fully standardized. In 2011, a new term, chromothripsis, was introduced raising great interest among researchers and soon motivating further investigations of the phenomenon. Chromothripsis is described as a single event in which one or more chromosomes go through severe DNA damage very much resembling rogue cells (RC) described more than 50 years ago.

View Article and Find Full Text PDF

Immortalizing primary cells with human telomerase reverse transcriptase (hTERT) has been common practice to enable primary cells to be of extended use in the laboratory because they avoid replicative senescence. Studying exogenously expressed hTERT in cells also affords scientists models of early carcinogenesis and telomere behavior. Control and the premature ageing disease-Hutchinson-Gilford progeria syndrome (HGPS) primary dermal fibroblasts, with and without the classical G608G mutation have been immortalized with exogenous hTERT.

View Article and Find Full Text PDF

Eukaryotic genome evolution integrates processes behind (i) chromosome plasticity (change in chromosome structure and number), (ii) genome stability maintenance (perfect stability would prevent adaptive processes) and (iii) genome size. Relationships between these variables remain enigmatic, hence the term "C-value enigma". This term reflects an apparent lack of correlation between genome size and perceived organismal complexity, replacing an older term "C-value paradox".

View Article and Find Full Text PDF

Purpose: To investigate the effects of ionizing radiation on telomere length and telomerase activity in human lens epithelial cells. There are studies suggesting evidence of telomere length in association with opacity of the lens; however, these studies have been conducted on Canine Lens cells. Our study was designed to understand further the effects of different doses of ionizing radiation on telomere length and telomerase activity in cultured human lens epithelium cells from three Donors.

View Article and Find Full Text PDF

Because of the increasing application of ionizing radiation in medicine, quantitative data on effects of low-dose radiation are needed to optimize radiation protection, particularly with respect to cataract development. Using mice as mammalian animal model, we applied a single dose of 0, 0.063, 0.

View Article and Find Full Text PDF

Numerous studies in microbiology, eukaryotic cell biology, plant biology, biomimetics, synthetic biology, and philosophy of science appear to support the principles of the epistemological theory inspired by evolution, also known as "Evolutionary Epistemology", or EE. However, that none of the studies acknowledged EE suggests that its principles have not been formulated with sufficient clarity and depth to resonate with the interests of the empirical research community. In this paper I review evidence in favor of EE, and also reformulate EE principles to better inform future research.

View Article and Find Full Text PDF

There are well-established morbidities associated with preterm birth including respiratory, neurocognitive and developmental disorders. However several others have recently emerged that characterise an 'aged' phenotype in the preterm infant by term-equivalent age. These include hypertension, insulin resistance and altered body fat distribution.

View Article and Find Full Text PDF

In directly irradiating cells, telomere metabolism is altered and similar effects have been observed in nontargeted cells. Exosomes and their cargo play dominant roles in communicating radiation-induced bystander effects with end points related to DNA damage. Here we report novel evidence that exosomes are also responsible for inducing telomere-related bystander effects.

View Article and Find Full Text PDF

The 'centromere-from-telomere' hypothesis proposed by Villasante et al. [2007a] aims to explain the evolutionary origin of the eukaryotic chromosome. The hypothesis is based on the notion that the process of eukaryogenesis was initiated by adaptive responses of the symbiont eubacterium and its archaeal host to their new conditions.

View Article and Find Full Text PDF

Telomeres are specialized structures responsible for the chromosome end protection. Previous studies have revealed that defective BRCA1 may lead to elevated telomere fusions and accelerated telomere shortening. In addition, BRCA1 associates with promyelocytic leukemia (PML) bodies in alternative lengthening of telomeres (ALTs) positive cells.

View Article and Find Full Text PDF

Background: Friedreich ataxia (FRDA) is a progressive inherited neurodegenerative disorder caused by mutation of the FXN gene, resulting in decreased frataxin expression, mitochondrial dysfunction and oxidative stress. A recent study has identified shorter telomeres in FRDA patient leukocytes as a possible disease biomarker.

Results: Here we aimed to investigate both telomere structure and function in FRDA cells.

View Article and Find Full Text PDF