Publications by authors named "Slightom J"

The natural product aureobasidin A (AbA) is a potent, well-tolerated antifungal agent with robust efficacy in animals. Although native AbA is active against a number of fungi, it has little activity against Aspergillus fumigatus, an important human pathogen, and attempts to improve the activity against this organism by structural modifications have to date involved chemistries too complex for continued development. This report describes novel chemistry for the modification of AbA.

View Article and Find Full Text PDF

The gene (aba1) encoding the NRPS complex responsible for the synthesis of the cyclic peptide antibiotic Aureobasidin A (AbA) in Aureobasidium pullulans BP-1938, was cloned using a combination of PCR and library screening approaches. The aba1 gene was found to consist of a single, intronless open reading frame (ORF) of 34,980 bp, encoding an 11,659 amino acid protein with a calculated molecular mass of 1,286,254 Da. Putative promoter and translation start elements were identified upstream from the putative ATG in the aba1 gene, and a consensus poly(A) addition signal (AATAAA) was identified 191 bp downstream of the translation termination codon (TGA).

View Article and Find Full Text PDF

The ligand-gated ion channel family includes receptors for serotonin (5-hydroxytryptamine, 5-HT), acetylcholine, GABA, and glutamate. Drugs targeting subtypes of these receptors have proven useful for the treatment of various neuropsychiatric and neurological disorders. To identify new ligand-gated ion channels as potential therapeutic targets, drafts of human genome sequence were interrogated.

View Article and Find Full Text PDF

Methyl parathion (MP) is an organophosphate pesticide illegally applied to the interiors of many hundreds of homes throughout the United States by unlicensed pesticide applicators. Public health authorities developed a protocol for investigating contaminated homes and classifying their need for public health interventions. This protocol included environmental screening for MP contamination and 1-day biomonitoring (a.

View Article and Find Full Text PDF

1 The human 5-HT(2C) receptor, when expressed heterologously in various mammalian cell lines (HEK293, SH-EP and NIH-3T3) at various receptor densities (6 to 45 pmol mg(-1) protein), mediates robust agonist-induced GTPgamma(35)S binding from coupling to G(i) subtypes of G proteins, in addition to G(q/11). Such a phenotype, however, was not seen with the human 5-HT(2A) and 5-HT(2B) receptors, indicating their common pathway with 5-HT(2C) limited to G(q/11), not including G(i). 2 Because intracellular regions are largely responsible for signalling pathways, we prepared the chimeras of the 5-HT(2A) and 5-HT(2B) receptors where the second and third intracellular loops, and the C-terminal region were replaced with the 5-HT(2C) counterparts.

View Article and Find Full Text PDF

The neuronal nicotinic acetylcholine receptor subunit, alpha7, can form homopentameric receptor/ion channel complexes. Potential contributions of its N-terminal region to homomeric interactions were investigated, in comparison with the corresponding region of an analogous heteromeric subunit, alpha3. Recombinant chimeras were prepared upon engineering the N-terminal alpha7 (M1-V224) or alpha3 (M1-S232) sequence into the background of another homomeric mouse 5-hydroxytryptamine3 (5-HT)(3) receptor.

View Article and Find Full Text PDF

Stachydrine (proline betaine) can be used by Sinorhizobium meliloti as a source of carbon and nitrogen. Catabolism depends on an initial N-demethylation, after which the resultant N-methyl proline enters general metabolism. Deletion and insertion mutagenesis demonstrated that the information necessary for catabolism is carried on the symbiotic plasmid (pSym) distal to nodD2 and the nod-nif cluster.

View Article and Find Full Text PDF

5-HT(1) receptor subtypes ((1B), (1D) and (1F)) have been implicated in migraine pathophysiology and their ligands have been examined for pharmacological actions in various experimental animal models. Considerable divergences exist, however, in their primary sequences between experimental animals and human, and additional models closer to human, such as non-human primates seem to be useful for migraine research. Earlier, we cloned the 5-HT(1D), and here 5-HT(1B) and 5-HT(1F) receptors from the chimpanzee, gorilla and Rhesus monkey, via polymerase chain reactions with their genomic DNAs and primers designed from the corresponding human receptors.

View Article and Find Full Text PDF

1 The D3 dopamine receptor presumably activates Gi/Go subtypes of G-proteins, like the structurally analogous D2 receptor, but its signalling targets have not been clearly established due to weak functional signals from cloned receptors as heterologously expressed in mostly non-neuronal cell lines. 2 In this study, recombinant human D3 receptors expressed in a human neuroblastoma cell line, SH-SY5Y, produced much greater signals than those expressed in a human embryonic kidney cell line, HEK293. Quinpirole, a prototypic agonist, markedly inhibited forskolin-stimulated cyclic AMP production and Ca2+-channel (N-type) currents in SH-SY5Y cells, and enhanced GTPgamma35S binding in isolated membranes, nearly ten times greater than that observed in HEK293 cell membranes.

View Article and Find Full Text PDF

Human platelet heparanase has been purified to homogeneity and shown to consist of two, non-covalently associated polypeptide chains of molecular masses 50 and 8 kDa. Protein sequencing provided the basis for determination of the full-length cDNA for this novel protein. Based upon this information and results from protein analysis and mass spectrometry, we propose a scheme to define the structural organization of heparanase in relation to its precursor forms, proheparanase and pre-proheparanase.

View Article and Find Full Text PDF

Conserved segments in DNA or protein sequences are strong candidates for functional elements and thus appropriate methods for computing them need to be developed and compared. We describe five methods and computer programs for finding highly conserved blocks within previously computed multiple alignments, primarily for DNA sequences. Two of the methods are already in common use; these are based on good column agreement and high information content.

View Article and Find Full Text PDF

1. Both the 5-HT1D and 5-HT1B receptors are implicated in migraine pathophysiology. Recently isochromans have been discovered to bind primate 5-HT1D receptors with much higher affinity than 5-HT1B receptors.

View Article and Find Full Text PDF

The RNA genome of grapevine leafroll-associated closterovirus-3 (GLRaV-3) was cloned as a cDNA generated from GLRaV-3-specific dsRNA, and a partial genome sequence of 13154 nucleotides (nt) including the 3' terminus was determined. The sequenced portion contained 13 open reading frames (ORFs) potentially encoding, in the 5'-3' direction, proteins of > 77 kDa (ORF1a; helicase, HEL), 61 kDa (ORF1b; RNA-dependent RNA polymerase, RdRp), 6 kDa (ORF2), 5 kDa (ORF3, small transmembrane protein), 59 kDa (ORF4; heat shock protein 70, HSP70), 55 kDa (ORF5), 35 kDa (ORF6; coat protein, CP), 53 kDa (ORF7; diverged coat protein, CPd), 21 kDa (ORF8), 20 kDa (ORF9), 20 kDa (ORF10), 4 kDa (ORF11), 7 kDa (ORF12), and an untranslated region of 277 nt. ORF1b is probably expressed via a +1 ribosomal frameshift mechanism, most similar to that of lettuce infectious yellows virus (LIYV).

View Article and Find Full Text PDF

The Cdc7 protein kinase of Saccharomyces cerevisiae is a critical regulator of several aspects of DNA metabolism and cell cycle progression. We describe the isolation of a human gene encoding a Cdc7 homolog. The Cdc7Hs protein sequence is 27% identical to that of the yeast protein, includes features unique to yeast Cdc7, and contains all conserved catalytic residues of protein kinases.

View Article and Find Full Text PDF

Locus control regions (LCRs) are cis-acting DNA segments needed for activation of an entire locus or gene cluster. They are operationally defined as DNA sequences needed to achieve a high level of gene expression regardless of the position of integration in transgenic mice or stably transfected cells. This review brings together the large amount of DNA sequence data from the beta-globin LCR with the vast amount of functional data obtained through the use of biochemical, cellular and transgenic experimental systems.

View Article and Find Full Text PDF

Phylogenetic reconstructions by parsimony were carried out on an enlarged body of primate gamma1 and gamma2-globin sequences. The results confirm that gamma1 and gamma2 arose from a tandem duplication in an ancient simian lineage ancestral to both platyrrhines (New World monkeys) and catarrhines (Old World monkeys and hominoids). Gene conversions between the two gamma homologs were frequent over the gamma gene proper but less frequent over the 5' flanking and very infrequent over the 3' flanking regions.

View Article and Find Full Text PDF

The 5-HT1D receptor is a potential target of anti-migraine drugs, and here its genes were cloned from chimpanzee, gorilla and rhesus monkey, via polymerase chain reactions with their genomic DNAs and the primers designed from the 5' and 3' untranslated regions of the human receptor. Direct sequencing of the polymerase chain reaction (PCR) products revealed high degrees of identity between their deduced amino acid sequences (the chimpanzee, gorilla and rhesus monkey) and that of human, differing by two, four and 11 residues, respectively. The binding properties of the receptors, as expressed in human embryonic kidney 293 cells, were compared to those obtained with the human and guinea pig receptors, the latter differing by 33 residues from the human receptor.

View Article and Find Full Text PDF

The set of potential T cell receptor specificities is highly diverse. The relative contributions of T cell receptor (TCR) V beta gene segment polymorphisms, duplications, deletions, and gene conversions to this final T cell receptor protein diversity are unknown. To study these mechanisms, we sequenced and compared closely related primate TCR gene segments from BV8S1, S2, and S5.

View Article and Find Full Text PDF

One basis for the evolution of organisms is the acquisition of new temporal and spatial domains of gene expression. Such novel expression domains could be generated either by cis sequence changes that alter the complement of trans-acting regulators binding to control elements or by changes in the expression patterns of one or more of the regulatory (trans) factors themselves. The gamma globin gene is a prime example of a gene that has undergone a distinct change in temporal expression at a defined time in evolution.

View Article and Find Full Text PDF

Hypersensitive site 3 (HS3) of the beta-like globin locus control region has been implicated as an important regulator of the beta-like globin genes, but the trans factors that bind HS3 have only been partially characterized. Using a five-species alignment (human, galago, rabbit, goat, and mouse) that represents 370 million years of evolution, we have identified 24 phylogenetic footprints in the HS3 core and surrounding regions. Probes corresponding to the human sequence at each footprint have been used in binding studies to identify the nuclear factors that bind within and near these conserved sequence elements.

View Article and Find Full Text PDF

Detailed analyses of transcripts encoding various isoforms of the human potassium (K+, inward rectifying) channel ROM-K (also referred to as K(ir)1.1) revealed the existence of at least five distinct transcripts [Shuck et al., J.

View Article and Find Full Text PDF

The objective of these studies was to examine the molecular mechanisms involved in transcriptional regulation of the gene for the intracellular structural variant of the IL-1 receptor antagonist (icIL-1Ra) molecule. By reverse transcription-PCR analysis, constitutive expression of endogenous icIL-1Ra mRNA was observed in the epithelial cell lines A431 and HT-29, but not in the macrophage cell lines RAW 264.7 and U937, or in the lymphocyte cell lines Raji and Jurkat.

View Article and Find Full Text PDF

The DNA sequence encoding the rat brain inward rectifier-10 K+ channel was amplified from rat brain RNA using reverse transcription-polymerase chain reaction and used to clone the human homolog. Low stringency screening of a human kidney cDNA library and subsequent DNA sequence analysis identified two related K+ inward rectifier cDNAs, referred to as Kir1.2 and Kir1.

View Article and Find Full Text PDF

A lambda ZAP II cDNA library was constructed by cloning cDNA prepared from a high molecular weight double-stranded RNA (dsRNA, ca. 18 kb) isolated from grapevine leafroll associated closterovirus-3 (GLRaV-3) infected tissues. This cDNA library was immuno-screened with GLRaV-3 coat protein specific polyclonal and monoclonal antibodies and three immuno-positive clones were identified.

View Article and Find Full Text PDF

The locus control region (LCR) of mammalian beta-globin genes covers at least 17 kb at the 5' end of the gene cluster and has been implicated in chromatin domain opening, enhancement, and insulation from neighboring sequences. Functional dissection of the LCR has defined the minimal cores for four of the five major DNase hypersensitive sites (HSs) that mark this regulatory region. To examine fully the patterns of conserved sequences in the mammalian homologs to the beta-globin LCR, we determined the complete DNA sequence of the galago beta-globin LCR and completed previously unsequenced regions of the rabbit LCR.

View Article and Find Full Text PDF