Publications by authors named "Slayden R"

Developing new classes of drugs that are active against infections caused by is a priority for treating and managing this deadly disease. Here, we describe screening a small library of 20 DNA gyrase inhibitors and identifying new lead compounds. Three structurally diverse analogues were identified with minimal inhibitory concentrations of 0.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy.

View Article and Find Full Text PDF

Inhalation anthrax is the most severe form of infection, often progressing to fatal conditions if left untreated. While recommended antibiotics can effectively treat anthrax when promptly administered, strains engineered for antibiotic resistance could render these drugs ineffective. Telavancin, a semisynthetic lipoglycopeptide antibiotic, was evaluated in this study as a novel therapeutic against anthrax disease.

View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's disease (PD) is the most common neurodegenerative movement disorder, and current treatments primarily involve dopamine replacement, which do not prevent disease progression.
  • Researchers investigated the glucocorticoid receptor (GR) modulator PT150 for its neuroprotective effects against neuroinflammation in a mouse model of PD, hypothesizing that it would protect dopamine neurons and reduce toxic protein accumulation.
  • The study found that PT150 treatment decreased dopamine neuron loss and microgliosis in the area of the brain affected by PD, demonstrating its potential as a neuroprotective strategy in this context.
View Article and Find Full Text PDF

To address intracellular mycobacterial infections, we developed a cocktail of four enzymes that catalytically attack three layers of the mycobacterial envelope. This cocktail is delivered to macrophages, through a targeted liposome presented here as ENTX_001. Endolytix Cocktail 1 (EC1) leverages mycobacteriophage lysin enzymes LysA and LysB, while also including α-amylase and isoamylase for degradation of the mycobacterial envelope from outside of the cell.

View Article and Find Full Text PDF

Burkholderia pseudomallei is the causative agent of melioidosis, which is increasingly being reported worldwide. Mortality rates as high as 40% have been reported based on clinical patient outcomes in the endemic areas of Australia and Thailand. Novel therapies are needed to reduce treatment duration and adverse effects and improve treatment outcomes.

View Article and Find Full Text PDF

Toxin-antitoxin loci regulate adaptive responses to stresses associated with the host environment and drug exposure. Phylogenomic studies have shown that Mycobacterium tuberculosis encodes a naturally expanded type II toxin-antitoxin system, including ParDE/RelBE superfamily members. Type II toxins are presumably regulated exclusively through protein-protein interactions with type II antitoxins.

View Article and Find Full Text PDF

Background: NIAID has a programme for testing drug candidates against biodefense and emerging bacterial pathogens that uses defined strain panels consisting of standard laboratory reference strains and strains of clinical origin.

Objectives: The current studies were performed to assess the activity of standard-of-care drugs, determine benchmark criteria for new investigational antibacterial candidate prioritization and identify reduced non-redundant strain panels for candidate performance classification.

Methods: The susceptibilities of each strain in the screening panels to 40 standard-of-care drugs and clinical drug combinations were determined by percentage growth inhibition using multiple concentrations, a method commonly used in efficient high-throughput screening efforts.

View Article and Find Full Text PDF

Despite significant research efforts, treatment options for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain limited. This is due in part to a lack of therapeutics that increase host defense to the virus. Replication of SARS-CoV-2 in lung tissue is associated with marked infiltration of macrophages and activation of innate immune inflammatory responses that amplify tissue injury.

View Article and Find Full Text PDF

Twenty lupane type A-ring azepano-triterpenoids were synthesized from betulin and its related derivatives and their antitubercular activity against , mono-resistant MTB strains, and nontuberculous strains and Mycobacterium were investigated in the framework of AToMIc (Anti-mycobacterial Target or Mechanism Identification Contract) realized by the Division of Microbiology and Infectious Diseases, NIAID, National Institute of Health. Of all the tested triterpenoids, 17 compounds showed antitubercular activity and 6 compounds were highly active on the H37Rv wild strain (with MIC 0.5 µM for compound ), out of which 4 derivatives also emerged as highly active compounds on the three mono-resistant MTB strains.

View Article and Find Full Text PDF

Novel bacterial topoisomerase inhibitors (NBTIs) are among the most promising new antibiotics in preclinical/clinical development. We previously reported dioxane-linked NBTIs with potent antistaphylococcal activity and reduced hERG inhibition, a key safety liability. Herein, polarity-focused optimization enabled the delineation of clear structure-property relationships for both microsomal metabolic stability and hERG inhibition, resulting in the identification of lead compound .

View Article and Find Full Text PDF

The development of new antibiotics to treat infections caused by drug-resistant Gram-negative pathogens is of paramount importance as antibiotic resistance continues to increase worldwide. Here we describe a strategy for the rational design of diazabicyclooctane inhibitors of penicillin-binding proteins from Gram-negative bacteria to overcome multiple mechanisms of resistance, including β-lactamase enzymes, stringent response and outer membrane permeation. Diazabicyclooctane inhibitors retain activity in the presence of β-lactamases, the primary resistance mechanism associated with β-lactam therapy in Gram-negative bacteria.

View Article and Find Full Text PDF

Background: is a highly virulent and contagious Gram-negative intracellular bacterium that causes the disease tularaemia in mammals and is classified as a Category A priority pathogen.

Methods: We utilized a systematic analysis of antibacterial potency, extent of dissemination by analysis of bacterial burden in a secondary vital organ, and survival rates to assess the efficacy of a novel rifampicin derivative, TPR1. The efficacy of TPR1 was evaluated alone and in combination with the standard of care drug, doxycycline, against type A Schu S4 using a lethal pulmonary model of infection in mice.

View Article and Find Full Text PDF

Filamenting temperature sensitive protein Z (FtsZ) is an essential bacterial cell division protein and a promising target for the development of new antibacterial therapeutics. As a part of our ongoing SAR studies on 2,5,6-trisubstituted benzimidazoles as antitubercular agents targeting -FtsZ, a new library of compounds with modifications at the 2 position was designed, synthesized and evaluated for their activity against -H37Rv. This new library of trisubstituted benzimidazoles exhibited MIC values in the range of 0.

View Article and Find Full Text PDF

Infection with Influenza A virus can lead to the development of encephalitis and subsequent neurological deficits ranging from headaches to neurodegeneration. Post-encephalitic parkinsonism has been reported in surviving patients of H1N1 infections, but not all cases of encephalitic H1N1 infection present with these neurological symptoms, suggesting that interactions with an environmental neurotoxin could promote more severe neurological damage. The heavy metal, manganese (Mn), is a potential interacting factor with H1N1 because excessive exposure early in life can induce long-lasting effects on neurological function through inflammatory activation of glial cells.

View Article and Find Full Text PDF

Inflammatory activation of glial cells promotes loss of dopaminergic neurons in Parkinson disease. The transcription factor nuclear factor κB (NF-B) regulates the expression of multiple neuroinflammatory cytokines and chemokines in activated glial cells that are damaging to neurons. Thus, inhibition of NF-B signaling in glial cells could be a promising therapeutic strategy for the prevention of neuroinflammatory injury.

View Article and Find Full Text PDF

There has been a significant reduction in annual tuberculosis incidence since the World Health Organization declared tuberculosis a global health threat. However, treatment of M. tuberculosis infections requires lengthy multidrug therapeutic regimens to achieve a durable cure.

View Article and Find Full Text PDF

We report the results of a symposium aimed at identifying validated biomarkers that can be used to complement clinical observations for diagnosis and prognosis of joint injury leading to equine osteoarthritis (OA). Biomarkers might also predict pre-fracture change that could lead to catastrophic bone failure in equine athletes. The workshop was attended by leading scientists in the fields of equine and human musculoskeletal biomarkers to enable cross-disciplinary exchange and improve knowledge in both.

View Article and Find Full Text PDF

2-Alkyl-1,2-benzisoselenazol-3(2H)-ones, represented by ebselen (1a), are being studied intensively for a range of medicinal applications. We describe both a new thermal and photoinduced copper-mediated cross-coupling between potassium selenocyanate (KSeCN) and N-substituted ortho-halobenzamides to form 2-alkyl-1,2-benzisoselenazol-3(2H)-ones containing a C-Se-N bond. The copper ligand (1,10-phenanthroline) facilitates C-Se bond formation during heating via a mechanism that likely involves atom transfer (AT), whereas, in the absence of ligand, photoinduced activation likely proceeds through a single electron transfer (SET) mechanism.

View Article and Find Full Text PDF

There is growing awareness of the link between drug-target residence time and in vivo drug activity, and there are increasing efforts to determine the molecular factors that control the lifetime of a drug-target complex. Rational alterations in the drug-target residence time require knowledge of both the ground and transition states on the inhibition reaction coordinate, and we have determined the structure-kinetic relationship for 22 ethyl- or hexyl-substituted diphenyl ethers that are slow-binding inhibitors of bpFabI1, the enoyl-ACP reductase FabI1 from Burkholderia pseudomallei. Analysis of enzyme inhibition using a two-dimensional kinetic map demonstrates that the ethyl and hexyl diphenyl ethers fall into two distinct clusters.

View Article and Find Full Text PDF

A critical goal of lead compound selection and optimization is to maximize target engagement while minimizing off-target binding. Since target engagement is a function of both the thermodynamics and kinetics of drug-target interactions, it follows that the structures of both the ground states and transition states on the binding reaction coordinate are needed to rationally modulate the lifetime of the drug-target complex. Previously, we predicted the structure of the rate-limiting transition state that controlled the time-dependent inhibition of the enoyl-ACP reductase InhA.

View Article and Find Full Text PDF

Much is known about the mode of action of drugs and resistance mechanisms under laboratory growth conditions, but research on the bacterial transcriptional response to drug pressure in vivo or efficacious mode of action and transient resistance mechanisms of clinically employed drugs is limited. Accordingly, to assess active alternative metabolism and transient resistance mechanisms, and identify molecular markers of treatment response, the in vivo transcriptional response of Burkholderia pseudomallei 1026b to treatment with ceftazidime in infected lungs was compared to the in vitro bacterial response in the presence of drug. There were 1,688 transcriptionally active bacterial genes identified that were unique to in vivo treated conditions.

View Article and Find Full Text PDF

Previously, structure-based drug design was used to develop substituted diphenyl ethers with potency against the Mycobacterium tuberculosis (Mtb) enoyl-ACP reductase (InhA), however, the highly lipophilic centroid compound, SB-PT004, lacked sufficient efficacy in the acute murine Mtb infection model. A next generation series of compounds were designed with improved specificity, potency against InhA, and reduced cytotoxicity in vitro, but these compounds also had limited solubility. Accordingly, solubility and pharmacokinetics studies were performed to develop formulations for this class and other experimental drug candidates with high logP values often encountered in drug discovery.

View Article and Find Full Text PDF

Melioidosis is caused by the facultative intracellular bacterium Burkholderia pseudomallei and is potentially fatal. Despite a growing global burden and high fatality rate, little is known about the disease. Recent studies demonstrate that cyclooxygenase-2 (COX-2) inhibition is an effective post-exposure therapeutic for pulmonary melioidosis, which works by inhibiting the production of prostaglandin E2 (PGE2).

View Article and Find Full Text PDF