Publications by authors named "Slawomir Michalowski"

Natural oils from watermelon, cherry, black currant, grape and pomegranate fruit seeds were applied in the synthesis of biopolyols using the transesterification reaction. In this manuscript, the preparation possibility of open-cell foams from a polyurethane system in which petrochemical polyol was fully replaced with biopolyols is analyzed. Firstly, polyurethane foam systems were developed on a laboratory scale, and they were next tested under industrial conditions.

View Article and Find Full Text PDF

In this study, rigid polyurethane foams modified with non-halogenated flame retardant were obtained. The foams were synthesized using two systems containing different blowing agents. In the first one, cyclopentane and water were used as a mixture of blowing agents, and in the second one, only water was used as a chemical blowing agent.

View Article and Find Full Text PDF

In this work, we report on flexible toluene diisocyanate (TDI)-based polyurethane foams (FPUFs) chemically modified by POSS moieties, i.e., octa (3-hydroxy-3-methylbutyldimethylsiloxy) POSS (OCTA-POSS) and 1,2-propanediolizo-butyl POSS (PHI-POSS).

View Article and Find Full Text PDF

In this article, rigid polyurethane foams obtained with the addition of a bio-polyol from rapeseed oil, were modified with the dimethyl propane phosphonate as additive flame retardant and two reactive flame retardants diethyl (hydroxymethyl)phosphonate and diethyl bis-(2-hydroxyethyl)-aminomethylphosphonate. The influence of used flame retardants on the foaming process and characteristic processing times of tested polyurethane systems were determined. The obtained foams were tested in terms of cell structure, physical and mechanical properties, as well as flammability.

View Article and Find Full Text PDF

A new type of partially biobased reinforcing filler system was developed in order to be used as a flame retardant for polylactic acid (PLA) and polypropylene (PP)-based composites. The prepared materials intended for injection technique processing were melt blended using the novel system containing ammonium polyphosphate (EX), biocarbon (BC), and basalt fibers (BF). All of the prepared samples were subjected to a detailed analysis.

View Article and Find Full Text PDF

Rigid polyurethane foams (RPURF) containing a bio-polyol from rapeseed oil and different phosphorus-based flame retardants were obtained. Triethyl phosphate (TEP), dimethyl propane phosphonate (DMPP) and cyclic phosphonates Addforce CT 901 (20 parts per hundred polyol by weight) were used in the synthesis of RPURF. The influence of used flame retardants on foaming process, cell structure, and physical-mechanical properties as well as flammability of RPURF were examined.

View Article and Find Full Text PDF

Rigid polyurethane foams were obtained using two types of renewable raw materials: bio-polyols and a cellulose filler (ARBOCEL P 4000 X, JRS Rettenmaier, Rosenberg, Germany). A polyurethane system containing 40 wt.% of rapeseed oil-based polyols was modified with the cellulose filler in amounts of 1, 2, and 3 php (per hundred polyols).

View Article and Find Full Text PDF

In this work, thermally expanded vermiculite (TE-VMT) was surface modified and used as a filler for composites with a polylactide (PLA) matrix. Modification of vermiculite was realized by simultaneous ball milling with the presence of two PLA chain extenders, aromatic carbodiimide (KI), and 4,4'-methylenebis(phenyl isocyanate) (MDI). In addition to analyzing the particle size of the filler subjected to processing, the efficiency of mechanochemical modification was evaluated by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

A second-generation bio-based feedstock-tall oil fatty acids-was epoxidised via two pathways. Oxirane rings were introduced into the fatty acid carbon backbone using a heterogeneous epoxidation catalyst-ion exchange resin Amberlite IR-120 H or enzyme catalyst lipase B under the trade name Novozym 435. High functionality bio-polyols were synthesised from the obtained epoxidated tall oil fatty acids by oxirane ring-opening and subsequent esterification reactions with different polyfunctional alcohols: trimethylolpropane and triethanolamine.

View Article and Find Full Text PDF

High-quality rigid polyurethane (PU) foam thermal insulation material has been developed solely using bio-polyols synthesized from second-generation bio-based feedstock. High functionality bio-polyols were synthesized from cellulose production side stream-tall oil fatty acids by oxirane ring-opening as well as esterification reactions with different polyfunctional alcohols, such as diethylene glycol, trimethylolpropane, triethanolamine, and diethanolamine. Four different high functionality bio-polyols were combined with bio-polyol obtained from tall oil esterification with triethanolamine to develop rigid PU foam formulations applicable as thermal insulation material.

View Article and Find Full Text PDF

This work reports for the first time on a new class of flexible polyurethane foam hybrids (PUFs) synthesized with the use of less toxic aliphatic hexamethylene diisocyanate (HDI), which have been chemically modified by POSS moieties. The flexible polyurethane foam hybrids (PUFs) chemically modified by functionalized polyhedral oligomeric silsesquioxanes: octa(3-hydroxy-3-methylbutyldimethylsiloxy)POSS (OCTA-POSS) and 1,2-propanediolizo-butylPOSS (PHI-POSS), was obtained. The resulting foams, which contain 0 to 15 wt % POSS, were characterized in terms of their structure, morphology, density and compressive strength.

View Article and Find Full Text PDF

Although a wide variety of biomaterials have been already proposed for use in bone tissue engineering, there is still need for man-made materials, which would combine support for osteogenesis with simplicity desirable for upscaling and costs reduction. In this study we have shown that synthetic calcite may serve as a scaffold for human osteoblasts transplantation. A simple dynamic system allows uniform and effective cell distribution.

View Article and Find Full Text PDF

Aim Of The Study: Evaluation of the influence of the introduced structure modification in porous ceramic grafts on TiO2 base on overgrowing with bone tissue, in examinations with use of scanning microscopy and X-rays was the subject of the examinations.

Material And Method: New ceramic materials based on TiO2 with high values of mechanical resistance, large sintering degree and biocompatibility in in vitro conditions were prepared. Those properties cause that they are worth interest as potential osteosubstitutive materials.

View Article and Find Full Text PDF