Publications by authors named "Slawomir Lach"

This work describes light-driven assembly of dynamic formations and functional particle swarms controlled by appropriately programmed light patterns. The system capitalizes on the use of a fluidic bed whose low thermal conductivity assures that light-generated heat remains "localized" and sets strong convective flows in the immediate vicinity of the particles being irradiated. In this way, even low-power laser light or light from a desktop slide projector can be used to organize dynamic formations of objects spanning four orders of magnitude in size (from microns to centimeters) and over nine orders of magnitude in terms of mass.

View Article and Find Full Text PDF

Contemporary materials discovery requires intricate sequences of synthesis, formulation, and characterization that often span multiple locations with specialized expertise or instrumentation. To accelerate these workflows, we present a cloud-based strategy that enabled delocalized and asynchronous design-make-test-analyze cycles. We showcased this approach through the exploration of molecular gain materials for organic solid-state lasers as a frontier application in molecular optoelectronics.

View Article and Find Full Text PDF
Article Synopsis
  • Rapid advancements in robotic platforms for chemistry are hindered by their current inability to adapt to changing conditions in real-time.
  • A new dynamically programmable system has been developed that uses seven sensors to monitor reactions continuously, enabling it to optimize and discover new molecules efficiently.
  • The system successfully demonstrated closed-loop optimization through in-line spectroscopy techniques, resulting in significant yield improvements and the discovery of new reactions and molecules.
View Article and Find Full Text PDF

Several years have passed since the medical and scientific communities leaned toward tissue engineering as the most promising field to aid bone diseases and defects resulting from degenerative conditions or trauma. Owing to their histocompatibility and non-immunogenicity, bone grafts, precisely autografts, have long been the gold standard in bone tissue therapies. However, due to issues associated with grafting, especially the surgical risks and soaring prices of the procedures, alternatives are being extensively sought and researched.

View Article and Find Full Text PDF

Studies revolving around mechanisms responsible for the development of amyloid-based diseases lay the foundations for the recognition of molecular targets of future to-be-developed treatments. However, the vast number of peptides and proteins known to be responsible for fibril formation, combined with their complexity and complexity of their interactions with various cellular components, renders this task extremely difficult and time-consuming. One of these proteins, human cystatin C (CC), is a well-known and studied cysteine-protease inhibitor.

View Article and Find Full Text PDF

The growing demand for new, sophisticated, multifunctional materials has brought natural structural composites into focus, since they underwent a substantial optimization during long evolutionary selection pressure and adaptation processes. Marine biological materials are the most important sources of both inspiration for biomimetics and of raw materials for practical applications in technology and biomedicine. The use of marine natural products as multifunctional biomaterials is currently undergoing a renaissance in the modern materials science.

View Article and Find Full Text PDF

Lysosomes have become an important target for anticancer therapeutics because lysosomal cell death bypasses the classical caspase-dependent apoptosis pathway, enabling the targeting of apoptosis- and drug-resistant cancers. However, only a few small molecules-mostly repurposed drugs-have been tested so far, and these typically exhibit low cancer selectivity, making them suitable only for combination therapies. Here, we show that mixed-charge nanoparticles covered with certain ratios of positively and negatively charged ligands can selectively target lysosomes in cancerous cells while exhibiting only marginal cytotoxicity towards normal cells.

View Article and Find Full Text PDF

It is recognized that interactions between most materials are governed by their surface properties and manifest themselves at the interface formed between them. To gain more insight into this thin layer, several methods have been deployed. Among them, spectroscopic methods have been thoroughly evaluated.

View Article and Find Full Text PDF

The recent impact of implants on improving the human life quality has been enormous. During the past two decades we witnessed major advancements in both material and structural development of implants. They were driven mainly by the increasing patients' demand and the need to address the major issues that come along with the initially underestimated complexity of the bone-implant interface.

View Article and Find Full Text PDF

When a thin polymer film supported by a conductive substrate is contacted by and then separated from a micropatterned polymeric stamp, the so-called contact electrification creates electrical charges over the stamped regions. Simultaneously, image charges are induced in the conductive substrate. Together, the surface and image charges establish large fields within the film, in effect polarizing it.

View Article and Find Full Text PDF

A metal surface passivated with a tightly packed self-assembled monolayer (SAM) can be made catalytically active upon the metal's mechanical deformation. This deformation renders the SAM sparser and exposes additional catalytic sites on the metal's surface. If the deformation is elastic, return of the metal to the original shape "heals" the SAM and nearly extinguishes the catalytic activity.

View Article and Find Full Text PDF

Placed at a water/air interface, particles of porphyrin-based MOFs (metal-organic frameworks) cut from large-area films display efficient, multiple-use autonomous motility powered by release of solvents incorporated in the MOF matrix and directionality dictated by their shapes. The particles can be refueled multiple times and can achieve speeds of ca. 200 mm·s with high kinetic energy per unit of chemical "fuel" expended (>50 μJ·g).

View Article and Find Full Text PDF

Antibody based immune-checkpoint blockade therapy is a major breakthrough in oncology, leading to clinical benefit for cancer patients. Among the growing family of inhibitory receptors, the B and T lymphocyte attenuator (BTLA), which interacts with herpes virus entry mediator (HVEM), is a promising target for immunotherapy. Indeed, BTLA inhibits T-cell proliferation and cytokine production.

View Article and Find Full Text PDF

Under non-equilibrium conditions, liquid droplets coupled to their environment by sustained flows of matter and/or energy can become "active" systems capable of various life-like functions. When "fueled" by even simple chemical reactions, such droplets can become tactic and can perform "intelligent" tasks such as maze solving. With more complex chemistries, droplets can support basic forms of metabolism, grow, self-replicate, and exhibit evolutionary changes akin to biological cells.

View Article and Find Full Text PDF