Plant-parasitic nematodes are a major threat to crop production in all agricultural systems. The scarcity of classical resistance genes highlights a pressing need to find new ways to develop nematode-resistant germplasm. Here, we sequence and assemble a high-quality phased genome of the model cyst nematode Heterodera schachtii to provide a platform for the first system-wide dual analysis of host and parasite gene expression over time, covering all major parasitism stages.
View Article and Find Full Text PDFReactive oxygen species (ROS) generated in response to infections often activate immune responses in eukaryotes including plants. In plants, ROS are primarily produced by plasma membrane-bound NADPH oxidases called respiratory burst oxidase homologue (Rboh). Surprisingly, Rbohs can also promote the infection of plants by certain pathogens, including plant parasitic cyst nematodes.
View Article and Find Full Text PDFAlthough the use of natural resistance is the most effective management approach against the potato cyst nematode (PCN) , the existence of pathotypes with different virulence characteristics constitutes a constraint towards this goal. Two resistance sources, (from ) and from ssp. CPC2802 (from the Commonwealth Potato Collection) are widely used in potato breeding programmes in European potato industry.
View Article and Find Full Text PDFCyst nematodes are economically important pests. As obligatory biotrophic endoparasites they invade host roots and induce formation of syncytia, structures that serve them as the only source of nutrients. During syncytium development, extensive cell wall modifications take place.
View Article and Find Full Text PDFFor the proliferation of their feeding sites (syncytia), the potato cyst nematode Globodera rostochiensis is thought to recruit plant endo-beta-1,4-glucanases (EGases, EC. 3.2.
View Article and Find Full Text PDFCyst nematodes induce specific syncytial feeding structures within the root which develop from an initial cell by successive incorporation of neighbouring cells through local cell wall dissolutions followed by hypertrophy of included cells. Expansins are known to induce cell wall relaxation and extension in acidic pH, and they are involved in many processes requiring wall modification from cell expansion to cell wall disassembly. We studied the expression pattern of tomato (Lycopersicon esculentum L.
View Article and Find Full Text PDF