The paper concerns the numerical modelling of a new slim-floor system with innovative steel-concrete composite beams called "hybrid beams". Hybrid beams consist of a high-strength TT inverted cross-section steel profile and a concrete core made of high-performance concrete and are jointed with prestressed hollow core slabs by infill concrete and tie reinforcement. Such systems are gaining popularity since they allow the integration of the main structural members within the ceiling depth, shorten the execution time, and reduce the use of concrete and steel.
View Article and Find Full Text PDFMaterials (Basel)
November 2021
The study was devoted to the numerical modelling of concrete-to-concrete interfaces. Such an interface can be found in many modern composite structures, so proper characterisation of its behaviour is of great importance. A strategy for calibration of a model based on cohesive finite elements and the elastic-damage traction-separation constitutive law available by default in the Abaqus code was proposed.
View Article and Find Full Text PDFThe paper concerns the non-linear finite element analysis (NLFEA) of Reinforced Concrete (RC) structures for engineering applications. The required level of complexity of constitutive models for such analysis was discussed and non-linear elastic models combined with the smeared cracking approach proved to be efficient. A new constitutive hypoelastic-brittle model of concrete based on these assumptions was proposed.
View Article and Find Full Text PDFThe present paper is dedicated to the analysis of under sleeper pads (USP), which are resilient elements used in ballasted track systems as vibration isolators. Four types of USP are considered. The authors present the results of laboratory tests, which are then used as input values for the finite element (FE) and mechanical model of the structure.
View Article and Find Full Text PDF