Aphids adapt to unfavourable environmental conditions, such as low temperatures in winter, by laying diapausing eggs that overwinter. Diapause is a stress-resistant and developmentally arrested stage that can be adopted in order to increase the chance of survival in adverse environmental conditions. The diapause process of aphids is still very poorly understood.
View Article and Find Full Text PDFMicrocephaly presents in neurodevelopmental disorders with multiple aetiologies, including bi-allelic mutation in , a component of the biologically fundamental and conserved microtubule-nucleation complex, γ-TuRC. Elucidating underlying principles driving microcephaly requires clear phenotype recapitulation and assay reproducibility, areas where go-to experimental models fall short. We present an alternative simple vertebrate/invertebrate dual system to investigate fundamental -related processes driving human microcephaly and associated developmental traits.
View Article and Find Full Text PDFTissue function and shape rely on the organization of the extracellular matrix (ECM) produced by the respective cells. Our understanding of the underlying molecular mechanisms is limited. Here, we show that extracellular Tweedle (Twdl) proteins in the fruit fly form two adjacent two-dimensional sheets underneath the cuticle surface and above a distinct layer of dityrosinylated and probably elastic proteins enwrapping the whole body.
View Article and Find Full Text PDFAphids are herbivores carrying the status of major pests for crops and ornamental plants. The many specific biological features of aphids allow them to survive unfavorable environmental conditions. As for other insects, a predominant strategy for aphids surviving winter, is laying diapausing eggs.
View Article and Find Full Text PDFThe stability of extracellular matrices is in general ensured by cross-linking of its components. Previously, we had shown that the integrity of the layered Drosophila cuticle relies on the presence of a covalent cuticular dityrosine network. Production and composition of this structure remained unstudied.
View Article and Find Full Text PDFThe relationships between Cinara (Cupressobium) aphids inhabiting woody parts and leaves of conifers belonging to Cupressaceae have been studied using a mitochondrial gene (COI) and a nuclear gene (EF1-α). Based on the COI sequences, genetic distances between species ranged from 5.6 % between Cinara (C.
View Article and Find Full Text PDFExoskeletons stabilize cell, tissue, and body morphology in many living organisms including fungi, plants, and arthropods. In insects, the exoskeleton, the cuticle, is produced by epidermal cells as a protein extracellular matrix containing lipids and the polysaccharide chitin, and its formation requires coordinated synthesis, distribution, and modification of these components. Eventually, the stepwise secretion and sorting of the cuticle material results in a layered structure comprising the envelope, the proteinaceous epicuticle, and the chitinous procuticle.
View Article and Find Full Text PDFThe physical interaction of the plasma membrane with the associated cortical cytoskeleton is important in many morphogenetic processes during development. At the end of the syncytial blastoderm of Drosophila the plasma membrane begins to fold in and forms the furrow canals in a regular hexagonal pattern. Every furrow canal leads the invagination of membrane between adjacent nuclei.
View Article and Find Full Text PDFp24 proteins are assumed to play an important role in the transport of secreted and transmembrane proteins into membranes. However, only few cargo proteins are known that partially, but in no case completely require p24 proteins for membrane transport. Here, we show that two p24 proteins are essential for dorsoventral patterning of Drosophila melanogaster embryo.
View Article and Find Full Text PDFIn Drosophila, the dorsoventral axis is set up by the action of the dorsal group of genes and cactus, which have been ordered genetically in a linear pathway. We have identified and characterised krapfen (kra) as a new member of the dorsal-group genes. kra encodes for the Drosophila homologue of MyD88, an adapter protein operating in the mammalian IL-1 pathway.
View Article and Find Full Text PDF