Publications by authors named "Slavomira Doktorovova"

In nasal drug product development, screening studies are vital to select promising compounds or formulations. The Parallel Artificial Membrane Permeability Assay (PAMPA), a high throughput screening tool, has been applied to evaluate drug permeability across several barriers such as the skin or blood-brain barrier. Herein, a new nasal-PAMPA model was optimized to predict nasal permeability, using a biorelevant donor medium containing mucin.

View Article and Find Full Text PDF

Powders for nasal delivery have been recognized as advantageous dosage forms over liquids due to increased stability and residence time on nasal mucosa, with improved bioavailability. They can be manufactured by spray-drying, allowing the optimization of the particle properties that are critical to guarantee nasal deposition, as size and shape. It is also a scalable and flexible method already explored extensively in the pharmaceutical industry.

View Article and Find Full Text PDF

In the current study, we demonstrate a structured approach to downstream process development for spray dried amorphous solid dispersions. Direct compression is generally not suitable due to typically poor flow of spray dried powders in tablets. Roller compaction (RC) is therefore the method of choice to enable spray dried dispersion downstream processing.

View Article and Find Full Text PDF

The development of biotechnological protocols based on cationic surfactants is a modern trend focusing on the fabrication of antimicrobial and bioimaging agents, supramolecular catalysts, stabilizers of nanoparticles, and especially drug and gene nanocarriers. The main emphasis given to the design of novel ecologically friendly and biocompatible cationic surfactants makes it possible to avoid the drawbacks of nanoformulations preventing their entry to clinical trials. To solve the problem of toxicity various ways are proposed, including the use of mixed composition with nontoxic nonionic surfactants and/or hydrotropic agents, design of amphiphilic compounds bearing natural or cleavable fragments.

View Article and Find Full Text PDF

In this work, we report the development and optimization of solid lipid nanoparticles (SLN) production by a simple, fast, and cost-effective high shear homogenization process. A screening of several solid lipids (Compritol 888 ATO, Precirol ATO 5, Cetyl Palmitate, Dynasan 118, Imwitor 900K, Stearic acid) has been carried out in combination with Poloxamer 188 as the selected surfactant, based on the mean particle size and polydispersity index. The improvement of the physical stability of the SLN dispersions was achieved by the use of a cationic lipid (cetyl trimethylammonium bromide) reaching zeta potential values above +60 mV.

View Article and Find Full Text PDF

CAB51, a compact antibody against human epithelial growth receptor 2 (HER2, ErbB2), has been linked to cationic Solid Lipid Nanoparticles (SLN) via streptavidin-biotin interaction and their targeting potential evaluated against breast cancer cells. The amount of streptavidin and biotinylated antibody was optimised by monitoring the mean complex size (intensity weighed average diameter), polydispersity index and immediate stability in phosphate buffer saline (PBS). The effect on MCF-7 and BT-474 cells was evaluated at concentrations of 0.

View Article and Find Full Text PDF

Curcumin, a phenolic compound from turmeric rhizome (Curcuma longa), has many interesting pharmacological effects, but shows very low aqueous solubility. Consequently, several drug delivery systems based on polymeric and lipid raw materials have been proposed to increase its bioavailability. Solid lipid nanoparticles (SLN), consisting of solid lipid matrix and a surfactant layer can load poorly water-soluble drugs, such as curcumin, deliver them at defined rates and enhance their intracellular uptake.

View Article and Find Full Text PDF

Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) were designed as exceptionally safe colloidal carriers for the delivery of poorly soluble drugs. SLN/NLC have the particularity of being composed of excipientsalready approved for use in medicines for human use, which offers a great advantage over any other nanoparticulate system developed from novel materials. Despite this fact, any use of excipients in new route of administration or in new dosage form requires evidence of safety.

View Article and Find Full Text PDF

The present work aimed at studying the interaction between insulin and SiNP surfaced with mucoadhesive polymers (chitosan, sodium alginate or polyethylene glycol) and the evaluation of their biocompatibility with HepG2 and Caco-2 cell lines, which mimic in vivo the target of insulin-loaded nanoparticles upon oral administration. Thus, a systematic physicochemical study of the surface-modified insulin-silica nanoparticles (Ins-SiNP) using mucoadhesive polymers has been described. The surfacing of nanoparticle involved the coating of silica nanoparticles (SiNP) with different mucoadhesive polymers, to achieve high contact between the systems and the gut mucosa to enhance the oral insulin bioavailability.

View Article and Find Full Text PDF

The expression of CD44 tags cells with stemness-associated properties (cancer initiating cells or cancer stem cells - CSC). This membrane glycoprotein with a cytoplasmic domain indirectly associated with the cellular cytoskeleton, has a crucial role in tumorigenesis. The CD44 receptor enables the cell to respond to changes in tumor microenvironment, promoting several signaling events related to tumor initiation, progression and fixation in distant host tissues.

View Article and Find Full Text PDF

Solid lipid nanoparticles (SLN) are colloidal drug and/or gene carriers developed from solid lipids and surfactants that are considered safe. Cationic SLN, usually used for formulating poorly water-soluble drugs and for gene delivery purposes, as positively charged particles may attach to cellular surfaces and be internalized more easily than negatively charged SLN, but they can also cause damage. The main aim of this work was to test a set of cationic SLN and investigate its influence on the amount of reactive oxygen species (ROS), on antioxidant enzymes activities and on possible oxidative damage to membrane lipids in HepG2 cells.

View Article and Find Full Text PDF

Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) were developed as alternative to other colloidal carriers. They were designed to overcome lipid nanoemulsions and liposomes in stability and ability to control the release of an encapsulated substance, and at the same time to be better tolerated than polymeric nanoparticles. Since the patenting of SLN discovery, large amount of data became available on the behaviour of these systems in vitro.

View Article and Find Full Text PDF

Cationic solid lipid nanoparticles (cSLN) are colloidal carriers for genes or drugs, particularly lipophilic drugs. Several reports exist on their high efficiency, but only a few studies report the effect of cSLNs on living cells. In the present work, internalization, cell viability (alamar blue assay) and genotoxic potential (alkaline comet assay) of three cSLN formulations (A-C) were evaluated in HepG2 and Caco-2 cells.

View Article and Find Full Text PDF

Objective: To prepare stable and easy to handle formulation of solid lipid nanoparticles (SLNs) by freeze-drying with or without cryoprotectants, as appropriate.

Materials And Methods: SLNs were freeze-dried without cryoprotectants or with cryoprotectants in quantities selected by freeze-thaw test (sucrose, glucose) or literature search (trehalose, maltose). Appearance, re-dispersability and size distribution of re-dispersed samples were evaluated.

View Article and Find Full Text PDF

We present a complete characterization of the kinetics of interaction between the homologous series of fluorescent fatty amines with the fluorescent moiety 7-nitrobenz-2-oxa-1,3-diazol-4-yl covalently bound to the amine group, NBD-C(n) (n = 8-16), and a lipid bilayer in the liquid disordered phase. The insertion into and the desorption from the lipid bilayer, as well as the rate of translocation across the two bilayer leaflets, has been measured at different temperatures, allowing an estimation of the thermodynamic parameters in the formation of the transition state. This is the first report on the complete characterization of the kinetics of the interaction of a large series of structurally homologous amphiphiles.

View Article and Find Full Text PDF

The structures of DMPC and DPPC bilayers in unilamellar liposomes, in the presence of 33.3 mol% cholesterol or the plant sterol β-sitosterol, have been studied by small-angle neutron scattering. The bilayer thickness d(L) increases in a similar way for both sterols.

View Article and Find Full Text PDF

Due to the multiple barriers imposed by the eye against the penetration of drugs, the ocular delivery and targeting are considered difficult to achieve. A major challenge in ocular drug therapy is to improve the poor bioavailability of topically applied ophthalmic drugs by overcoming the severe constraints imposed by the eye on drug absorption. One of the promising strategies nowadays is the use of colloidal carrier systems characterized by a submicron-meter size.

View Article and Find Full Text PDF

Solid lipid nanoparticles (SLNs) have emerged as important tools to modify the release profile for a large number of drugs including protein and peptide molecules. SLNs are produced from biocompatible and biodegradable lipid materials, making them a promising therapeutic strategy for drug targeting and delivery, and surmounting the inherent limitations of regulation acceptance. Due to their versatility in loading both lipophilic and hydrophilic molecules in the solid lipid matrix, SLNs depict the ability to prolong, extend or sustain the release profile of the loaded molecules, therefore reducing the repeated administration, and increasing the therapeutic value of a certain treatment.

View Article and Find Full Text PDF

The aim of this study was to develop nanostructured lipid carriers (NLC) for topical delivery of fluticasone propionate (FP) with the aim to further improve the safety profile and decrease the adverse-side effects commonly reported in topical corticotherapy. NLC are colloidal drug-carriers consisting of a blend of a solid lipid and a small amount of liquid lipid since these carriers have proved to be effective in epidermal targeting in particular of glucocorticoids. NLC consisting of glyceryl palmito-stearate, and PEG-containing medium chain triglycerides mixture, stabilised by polysorbate 80 and soybean phosphatidylcholine were prepared.

View Article and Find Full Text PDF

The scientific literature today provides several systems that can deliver active pharmaceutical ingredients (APIs) across the skin. These include reservoir matrices, matrix diffusion-controlled devices, multiple polymer devices and multilayer matrix assemblies. Among these, nanostructured lipid carriers (NLC) have emerged as novel systems composed of physiological lipid materials suitable for topical, dermal and transdermal administration.

View Article and Find Full Text PDF