Publications by authors named "Slavko V Mentus"

The increasing energy demands of modern society require a deep understanding of the properties of energy storage materials, as well as the tuning of their performance. We show that the capacitance of graphene oxide (GO) can be precisely tuned using a simple electrochemical reduction route. In situ resistance measurements, in combination with cyclic voltammetry measurements and Raman spectroscopy, have shown that upon reduction GO is irreversibly deoxygenated, which is further accompanied by structural ordering and an increase in electrical conductivity.

View Article and Find Full Text PDF

The increasing demand and high prices of advanced catalysts motivate a constant search for novel active materials with reduced contents of noble metals. The development of thin films and core-shell catalysts seems to be a promising strategy along this path. Using density functional theory we have analyzed a number of surface properties of supported bimetallic thin films with the composition AB (where A = Pt and Pd, and B = Cu, Ag and Au).

View Article and Find Full Text PDF

Vacancies in graphene present sites of altered chemical reactivity and open possibilities to tune graphene properties by defect engineering. The understanding of chemical reactivity of such defects is essential for successful implementation of carbon materials in advanced technologies. We report the results of a systematic DFT study of atomic adsorption on graphene with a single vacancy for the elements of rows 1-6 of the periodic table of elements (PTE), excluding lanthanides.

View Article and Find Full Text PDF

H production via water electrolysis plays an important role in hydrogen economy. Hence, novel cheap electrocatalysts for the hydrogen evolution reaction (HER) are constantly needed. Here, we describe a simple method for the preparation of composite catalysts for H evolution, consisting in simultaneous reduction of the graphene oxide film, and electrochemical deposition of Ni on its surface.

View Article and Find Full Text PDF

Understanding the ways graphene can be functionalized is of great importance for many contemporary technologies. Using density functional theory calculations we investigate how vacancy formation and substitutional doping by B, N, P and S affect the oxidizability and reactivity of the graphene basal plane. We find that the presence of these defects enhances the reactivity of graphene.

View Article and Find Full Text PDF

In this contribution we inspect the adsorption of H, OH, Cl and Pt on oxidized graphene using DFT calculations. The introduction of epoxy and hydroxyl groups on the graphene basal plane significantly alters its chemisorption properties, which can be attributed to the deformation of the basal plane and the type and distribution of these groups. We show that a general scaling relation exists between the hydrogen binding energies and the binding energies of other investigated adsorbates, which allows for a simple probing of the reactivity of oxidized graphene with only one adsorbate.

View Article and Find Full Text PDF

Antioxidative properties of naturally occurring flavon-3-ol, fisetin, were examined by both cyclic voltammetry and quantum-chemical based calculations. The three voltametrically detectable consecutive steps, reflected the fisetin molecular structure, catecholic structural unit in the ring B, C3-OH, and C7-OH groups in the rings C and A. Oxidation potential values, used as quantitative parameter in determining its oxidation capability, indicated good antioxidative properties found with this molecule.

View Article and Find Full Text PDF