Publications by authors named "Slavkin H"

Article Synopsis
  • Oral, dental, and craniofacial (ODC) health significantly influences overall well-being, yet there is a disconnect between dentists and physicians, leading to limited access to optimal healthcare and exacerbating health disparities.* -
  • Historically, dental treatments focused on extraction and prosthetics, but current infectious threats highlight the need for greater awareness and prevention of common oral diseases, often termed the "silent and invisible epidemic."* -
  • The paper advocates for integrating current ODC health knowledge into policies to promote health equity, ensuring that legal systems and public health initiatives address comprehensive healthcare access and outcomes.*
View Article and Find Full Text PDF

In anticipation of a major transformation in healthcare, this review provides highlights that anticipate the near future for oral public health (and beyond). Personalized or precision healthcare reflects the expectation that advances in genomics, imaging, and other domains will extend our risk assessment, diagnostic, and prognostic capabilities, and enables more effective prevention and therapeutic options for all Americans. Meanwhile, the current healthcare system does not meet cost, access, or quality criteria for all Americans.

View Article and Find Full Text PDF

Scientific inquiry and discovery are the fuel for education, research, technology, and health care in all the health professions: dentistry, medicine, nursing, pharmacy, and allied health sciences. The progression of discoveries from basic or fundamental to clinical research is followed by the progression from clinical to implementation and improved health outcomes and processes. Generally, implementation science is the scientific study of methods to promote the systematic uptake of research findings (e.

View Article and Find Full Text PDF

Objectives: Although dental decay is preventable, it remains the most common pediatric chronic disease. We describe a public health approach to implementing a scalable and sustainable school-based oral health program for low-income urban children.

Methods: The Los Angeles Trust for Children's Health, a nonprofit affiliated with the Los Angeles Unified School District, applied a public health model and developed a broad-based community-coalition to a) establish a District Oral Health Nurse position to coordinate oral health services, and b) implement a universal school-based oral health screening and fluoride varnishing program, with referral to a dental home.

View Article and Find Full Text PDF

Background: Wnt5a and Mrfzb1 genes are involved in the regulation of tooth size, and their expression levels are similar to that of Bmp7 during morphogenesis, including during the cap and early bell stages of tooth formation. We previously reported that Usag-1-deficient mice form supernumerary maxillary incisors. Thus, we hypothesized that BMP7 and USAG-1 signaling molecules may play important roles in tooth morphogenesis.

View Article and Find Full Text PDF

Seventy-six years ago, Herbert K. Cooper, DDS, DSc, LHD, FACD, created the first interprofessional health care team in response to the frequency of craniofacial anomalies and related speech and hearing deficits in Lancaster, Pa. His experiences and those from subsequent "medical-dental-nursing-pharmacy allied health professions" craniofacial teams inform and provide "best practices" for the future of interprofessional education.

View Article and Find Full Text PDF

Bone morphogenetic proteins (BMPs) are highly conserved signaling molecules that are part of the transforming growth factor (TGF)-beta superfamily, and function in the patterning and morphogenesis of many organs including development of the dentition. The functions of the BMPs are controlled by certain classes of molecules that are recognized as BMP antagonists that inhibit BMP binding to their cognate receptors. In this study we tested the hypothesis that USAG-1 (uterine sensitization-associated gene-1) suppresses deciduous incisors by inhibition of BMP-7 function.

View Article and Find Full Text PDF

The progress in phenotype descriptions, measurements, and analyses has been remarkable in the last 50 years. Biomarkers (proteins, carbohydrates, lipids, hormones, various RNAs and cDNAs, microarrays) have been discovered and correlated with diseases and disorders, as well as physiological responses to disease, injury, stress, within blood, urine, and saliva. Three-dimensional digital imaging advanced how we "see" and utilize phenotypes toward diagnosis, treatment, and prognosis.

View Article and Find Full Text PDF

Today, and looking to the future, scientific discoveries from cellular, developmental and molecular biology inform our understanding of cell, tissue and organ morphogenesis as exemplified in skin, bone, cartilage, dentine, enamel, muscle, nerve and many organs such as salivary glands and teeth. Present day biomedical science yields principles for the biomimetic design and fabrication of cells, tissues and organs. Bioengineering has become a strategy that can 'mimic' biological processes, and inform clinical procedures for tissue and organ replacements.

View Article and Find Full Text PDF

Scientific Discovery often reflects the art, science, and advocacy for biomedical research. Here the author reflects on selected highlights of discovery that contributed to several aspects of our understanding of craniofacial biology and craniofacial diseases and disorders.

View Article and Find Full Text PDF

Science is the fuel for technology and the foundation for understanding the human condition. In dental education, as in all health professions, science informs a basic understanding of development, is essential to understand the structure and function of biological systems, and is prerequisite to understand and perform diagnostics, therapeutics, and clinical outcomes in the treatment of diseases and disorders. During the last seventy-five years, biomedical science has transformed from discipline-based scientists working on a problem to multidisciplinary research teams working to solve complex problems of significance to the larger society.

View Article and Find Full Text PDF

Maxillofacial dysmorphogenesis is found in 5% of the population. To begin to understand the mechanisms required for maxillofacial morphogenesis, we employed the inhibitors of the differentiation 2 (Id2) knock-out mouse model, in which Id proteins, members of the regulator of basic helix-loop-helix (bHLH) transcription factors, modulate cell proliferation, apoptosis, and differentiation. We now report that spatially-restricted growth defects are localized at the skull base of Id2 KO mice.

View Article and Find Full Text PDF

Oral fluid-based (salivary) tests have the potential to create practical, point-of-care clinical instruments that are convenient, practical, and comfortable to use in dentistry and medicine. Currently, there are no simple, accurate, and inexpensive sampling, screening, or detection methods to support definitive diagnostic platforms across dental and medical disciplines. Though the benefits from advancing screening and detection technologies seem eminent, analytical, chemical, molecular, genetic, and protein markers are still under development.

View Article and Find Full Text PDF

Activation of osteoblastic bone anabolism in the calvarial sutures is considered to be the essential pathologic condition underlying mutant FGFR2-related craniofacial dysostosis. However, early clinical investigations indicated that abnormal cartilage development in the cranial base was rather a primary site of abnormal feature in Apert Syndrome (AS). To examine the significance of cartilaginous growth of the cranial base in AS, we generated a transgenic mouse bearing AS-type mutant Fgfr2IIIc under the control of the Col2a1 promoter-enhancer (Fgfr2IIIc(P253R) mouse).

View Article and Find Full Text PDF

Transforming growth factor-beta (Tgf-beta) signaling is crucial for regulating craniofacial development. Loss of Tgf-beta signaling results in defects in cranial neural crest cells (CNCC), but the mechanism by which Tgf-beta signaling regulates bone formation in CNCC-derived osteogenic cells remains largely unknown. In this study, we discovered that Tgf-beta regulates the basal transcriptional regulatory machinery to control intramembranous bone development.

View Article and Find Full Text PDF

The release of Oral Health in America: A Report of the Surgeon General in May 2000 raised national, state, and local awareness, for the first time ever, of the impact of oral disease in America. The report emphasized oral health's link to general health and well-being, and called for a national effort among individuals, communities, and health care providers to improve oral health among all Americans. One of the objectives from the Surgeon General's Report On Oral Health was to "advance the science base and translate into practice.

View Article and Find Full Text PDF

Background: The biological, chemical, behavioral and physical sciences provide the fuel for innovation, discovery and technology that continuously improves the quality of the human condition. Computer power derived from the dramatic breakthroughs of the digital revolution has made extraordinary computational capacity available for diagnostic imaging, bioinformatics (the science of information) and numerous aspects of how we practice dentistry in the 21st century.

Overview: The biological revolution was initiated by the identification of the structure for DNA in 1953, a discovery that continues to catalyze improvements in patient care through new and better diagnostics, treatments and biomaterials.

View Article and Find Full Text PDF

A contrarian view suggests that the ectodermal dysplasias, including more than 200 different disorders, represent clinical variability and molecular heterogeneity as well as complex multigene heritable conditions often characterized by dysmorphogenesis of derivatives of embryonic ectoderm and beyond. Controversy exists over which syndromes do or do not belong in the classification of the clinical features that characterize ectodermal dysplasias. For example, Ellis-van Creveld syndrome is characterized by abnormalities of the teeth and hair, as well as of the skeleton and the cardiovascular system.

View Article and Find Full Text PDF

Tooth root development begins after the completion of crown formation in mammals. Previous studies have shown that Hertwig's epithelial root sheath (HERS) plays an important role in root development, but the fate of HERS has remained unknown. In order to investigate the morphological fate and analyze the dynamic movement of HERS cells in vivo, we generated K14-Cre;R26R mice.

View Article and Find Full Text PDF