The analysis of compounds of the nitroguanidine family at trace level poses an analytical challenge. Nitroguanidine, 1-methyl-3-nitroguanidine, and 1-methyl-3-nitro-1-nitrosoguanidine, which are addressed in this article, have low lipophilicity, with log(K) equal to -0.89, - 0.
View Article and Find Full Text PDFMicroencapsulation of a carbon nanotube (CNT)-loaded paraffin phase change material, PCM in a poly(melamine-formaldehyde) shell, and the respective CNT-PCM gypsum composites is explored. Although a very low level (0.001-0.
View Article and Find Full Text PDFFormation of vanadium oxide nanofilm-coated graphene oxide (GO) is achieved by thermally induced explosive disintegration of a microcrystalline ammonium peroxovanadate-GO composite. GO sheets isolate the microcrystalline grains and capture and contain the microexplosion products, resulting in the deposition of the nanoscale products on the GO. Thermal treatment of the supported nanofilm yields a sequence of nanocrystalline phases of vanadium oxide (VO, VO) as a function of temperature.
View Article and Find Full Text PDFNitroguanidine, a widely used nitramine explosive, is an environmental contaminant that is refractory, persistent, highly mobile in soils and aquifers, and yet under-researched. Nitroguanidine determination in water and soil poses an analytical challenge due its high hydrophilicity, low volatility, charge neutrality over a wide pH range, and low proton affinity which results in low electrospray interface (ESI)-MS sensitivity. A sensitive method for the determination of nitroguanidine in aqueous and soil matrices was developed.
View Article and Find Full Text PDFA peroxogermanate thin film was deposited in high yield at room temperature on graphene oxide (GO) from peroxogermanate sols. The deposition of the peroxo-precursor onto GO and the transformations to amorphous GeO, crystalline tetragonal GeO, and then to cubic elemental germanium were followed by electron microscopy, XRD, and XPS. All of these transformations are influenced by the GO support.
View Article and Find Full Text PDFCellulose paper degradation products forming in the "tideline" area at the wet-dry interface of pure cellulose paper were analyzed using gas chromatography-electron ionization-mass spectrometry (GC-EI-MS) and high-resolution electrospray ionization-mass spectrometry (ESI-MS, LTQ Orbitrap) techniques. Different extraction protocols were employed in order to solubilize the products of oxidative cellulose decomposition, i.e.
View Article and Find Full Text PDFSodium-ion batteries are an alternative to lithium-ion batteries for large-scale applications. However, low capacity and poor rate capability of existing anodes are the main bottlenecks to future developments. Here we report a uniform coating of antimony sulphide (stibnite) on graphene, fabricated by a solution-based synthesis technique, as the anode material for sodium-ion batteries.
View Article and Find Full Text PDFWe describe a new, simple and low-temperature method for ultra-thin coating of graphene oxide (GO) by peroxostannate, tin oxide or a mixture of tin and tin oxide crystallites by different treatments. The technique is environmentally friendly and does not require complicated infrastructure, an autoclave or a microwave. The supported peroxostannate phase is partially converted after drying to crystalline tin oxide with average, 2.
View Article and Find Full Text PDFYeast displaying glucose oxidase on their surface were encapsulated in a graphene oxide hydrogel. The ability of the modified yeast to reduce graphene oxide by glucose assimilation while maintaining viability was tested with time and deemed suitable for biofuel cell applications.
View Article and Find Full Text PDFA generic method for conductive film coating of minerals and acid-sensitive materials by antimony-doped tin oxide (ATO) is introduced. The coating was performed from a hydrogen peroxide stabilized stannate and antimonate precursor solution. This is the first demonstration of ATO coating from an organic ligand-free solution.
View Article and Find Full Text PDFThe crystal structure of cesium hexahydroperoxostannate Cs(2)Sn(OOH)(6) is presented. The compound was characterized by single crystal and by powder X-ray diffraction, FTIR, (119)Sn MAS NMR, and TG-DTA. Cs(2)Sn(OOH)(6) crystallizes in the trigonal space group P3, a = 7.
View Article and Find Full Text PDFA new form of conductive and transparent porous composite electrode is introduced. The electrode material is composed of antimony-doped, tin oxide (ATO)-coated mica platelets imbedded in sol-gel-derived silicate or methyl silicate network. The platelet clays self-align in a layered structure within the silicate film, an anisotropic construction that minimizes the ATO loading required to achieve electric percolation.
View Article and Find Full Text PDF