Publications by authors named "Sladjana Kostic-Rajacic"

Adrenergic receptors are among the most studied G protein-coupled receptors. Activation or blockade of these receptors is a major therapeutic approach for the treatment of numerous disorders such as cardiac hypertrophy, congestive heart failure, hypertension, angina pectoris, cardiac arrhythmias, depression, benign prostate hyperplasia, anaphylaxis, asthma, and hyperthyroidism. Among all nine cloned adrenoceptor subtypes and the subsequent development of animal models, a significant target for various neurological conditions treatment is alpha1-adrenergic receptors.

View Article and Find Full Text PDF

Monoamine oxidases (MAOs) play a key role in the metabolism of major monoamine neurotransmitters. In particular, the upregulation of MAO-B in Parkinson's disease, Alzheimer's disease and cancer augmented the development of selective MAO-B inhibitors for diagnostic and therapeutic purposes, such as the anti-parkinsonian MAO-B irreversible binder l-deprenyl (Selegiline®). Herein we report on the synthesis of novel fluorinated indanone derivatives for PET imaging of MAO-B in the brain.

View Article and Find Full Text PDF

Herein, we report on the synthesis and pharmacological evaluation of ten novel fluorinated cinnamylpiperazines as potential monoamine oxidase B (MAO-B) ligands. The designed derivatives consist of either cinnamyl or 2-fluorocinnamyl moieties connected to 2-fluoropyridylpiperazines. The three-step synthesis starting from commercially available piperazine afforded the final products in overall yields between 9% and 29%.

View Article and Find Full Text PDF

Affinity chromatography was used to identify potential cellular targets that are responsible for neuroprotective activity of N-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-arylamides. Active and inactive representatives of N-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-arylamides bearing an extended linker were synthesized and immobilized on an agarose-based matrix. This was followed by the identification of specifically bound proteins isolated out of the whole rat brain extract.

View Article and Find Full Text PDF

Research on dopamine (DA) and its receptors, and in particular the D2 receptor subclass, has been an intriguing and fast developing scientific field in the past 35 years. Methods of medicinal chemistry, molecular and structural biology as well as computational chemistry were used in the studies of DA receptors (DRs). Early attempts to describe DRs were based on a small amount of experimental data available and produced crude models at best.

View Article and Find Full Text PDF

Arylpiperazine-based dopaminergic/serotonergic ligands exert neuroprotective activity. We examined the effect of arylpiperazine D2 /5-HT1A ligands, N-{4-[2-(4-phenyl-piperazin-1-yl)-ethyl}-phenyl]-picolinamide (6a) and N-{3-[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-picolinamide (6b), in experimental autoimmune encephalomyelitis (EAE), a model of neuroinflammation. Both compounds (10 mg/kg i.

View Article and Find Full Text PDF

The crystal structures of the D3 dopamine receptor and several other G-protein coupled receptors (GPCRs) were published in recent times. Those 3D structures are used by us and other scientists as a template for the homology modeling and ligand docking analysis of related GPCRs. Our main scientific interest lies in the field of pharmacologically active N-arylpiperazines that exhibit antipsychotic and/or antidepressant properties, and as such are dopaminergic and serotonergic receptor ligands.

View Article and Find Full Text PDF

In this paper, we report the molecular modeling of the 5HT2A receptor and the molecular docking of arylpiperazine-like ligands. The focus of the research was on explaining the effects the ligand structure has on the binding properties of the 5HT2A receptor and on the key interactions between the ligands and the receptor-binding site. To see what the receptor–ligand interactions were, various substituents were introduced in one part of the ligand, keeping the rest unchanged.

View Article and Find Full Text PDF

The ratio of affinities toward the dopamine D₂ and the 5-hydroxytryptamine 5-HT(1A) receptors is one of the important parameters that determine the efficiency of antipsychotic drugs. Here, we present the synthesis of ortho-, meta-, and para-N-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-arylamides and their structure-activity relationship studies on dopamine D₂ and 5-hydroxytryptamine 5-HT(1A) receptors. It was shown that the biological activity of the described ligands strongly depends on their topology as well as on the nature of the heteroaryl group in the head of the molecules.

View Article and Find Full Text PDF

We investigated the ability of 19 recently synthesized arylpiperazine compounds to protect human SH-SY5Y neuroblastoma cells from the neurotoxin 6-hydroxydopamine (6-OHDA). The compound with the most potent neuroprotective action was N-{3-[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-picolinamide (6b), which reduced 6-OHDA-induced apoptotic death through stabilization of mitochondrial membrane and subsequent prevention of superoxide production, caspase activation and DNA fragmentation. 6-OHDA-triggered autophagic response was also reduced by 6b, which prevented inactivation of the main autophagy repressor mTOR, upregulation of proautophagic beclin-1, conversion of microtubule-associated protein 1 light chain 3 (LC3)-I to autophagosome-associated LC3-II, as well as intracytoplasmic acidification induced by 6-OHDA.

View Article and Find Full Text PDF

Interest in structure-based G-protein-coupled receptor (GPCR) ligand discovery is huge, given that almost 30 % of all approved drugs belong to this category of active compounds. The GPCR family includes the dopamine receptor subtype D2 (D2DR), but unfortunately--as is true of most GPCRs--no experimental structures are available for these receptors. In this publication, we present the molecular model of D2DR based on the previously published crystal structure of the dopamine D3 receptor (D3DR).

View Article and Find Full Text PDF

It is suggested that the ratio of dopamine D(2) to 5-hydroxytryptamine 5-HT(1A) activity is an important parameter that determines the efficiency of antipsychotic drugs. Here we present the synthesis of N-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-2-aryl-2-yl-acetamides and 1-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-3-aryl-2-yl-ureas and their structure-activity relationship studies on dopamine D(2) and 5-hydrohytryptamine 5-HT(1A) receptors. It was shown that ligand selectivity and affinity strongly depends on their topology and the presence of a pyridyl group in the head of molecules.

View Article and Find Full Text PDF

The protective ability of novel arylpiperazine-based dopaminergic ligands against nitric oxide (NO)-mediated neurotoxicity is investigated. The most potent neuroprotective arylpiperazine identified during the study was N-{4-[2-(4-phenyl-piperazin-1-yl)ethyl]-phenyl}picolinamide, which protected SH-SY5Y human neuron-like cells from the proapoptotic effect of NO donor sodium nitroprusside (SNP) by decreasing oxidative stress, mitochondrial membrane depolarization, caspase activation and subsequent phosphatydilserine externalization/DNA fragmentation. The protective effect was associated with the inhibition of proapoptotic (JNK, ERK, AMPK) and activation of antiapoptotic (Akt) signaling pathways, in the absence of interference with intracellular NO accumulation.

View Article and Find Full Text PDF

Five groups of previously synthesized and initially screened non-substituted and 4-halogenated arylpiperazin-1-yl-ethyl-benzimidazoles were estimated for their in-vitro binding affinities at the rat D(2) , 5-HT(2A) , and α(1) -adrenergic receptors. Among all these compounds, 2-methoxyphenyl and 2-chlorophenyl piperazines demonstrate the highest affinities for the tested receptors. The effects of 4-halogenation of benzimidazoles reveal that substitution with bromine may greatly increase the affinity of the compounds for the studied receptors, while the effect of substitution with chlorine is less remarkable.

View Article and Find Full Text PDF

Biocatalytic lipophilization of hydroxycinnamic acids was performed in several BF(4)(-) and PF(6)(-) imidazolium ionic liquids using immobilized lipases. The influence of various reaction parameters on the performance of the biocatalytic process was pointed out, using as model reaction the esterification of ferulic acid. The biocatalytic lipophilization strongly depended on the ion composition of ionic liquids used.

View Article and Find Full Text PDF

The present study identifies xanthones gentiakochianin and gentiacaulein as the active principles responsible for the in vitro antiglioma action of ether and methanolic extracts of the plant Gentiana kochiana. Gentiakochianin and gentiacaulein induced cell cycle arrest in G(2)/M and G(0)/G(1) phases, respectively, in both C6 rat glioma and U251 human glioma cell lines. The more efficient antiproliferative action of gentiakochianin was associated with its ability to induce microtubule stabilization in a cell-free assay.

View Article and Find Full Text PDF

In this publication we are describing synthesis, binding properties, and receptor docking of 4-halo-6-[2-(4-arylpiperazin-1-yl)ethyl]-1H-benzimidazoles, a new compounds with potential antipsychotics properties. Affinity towards the dopamine D(1)-like and D(2)-like, and serotonin 5-HT(1A) receptors was evaluated using the radioligand binding assays. All compounds tested had affinity for the D(2)-like and 5-HT(1A) receptors, but were inactive towards the D(1)-like receptor.

View Article and Find Full Text PDF

Two new series of substituted arylpiperazines with heterocyclic 3-propoxy-benzimidazole or 3-propoxy-benzimidazole-2-thione groups were synthesized and their in vitro binding affinities for the D(2), 5-HT(1A), 5-HT(2A), and alpha(1)-adrenergic receptors determined. Among them, only two compounds with phenyl aryl-constituent (8a and 9a) showed 5-HT(2A)/D(2) pK(i) binding ratios proposed for atypical neuroleptics. As to their behavioral screening on rodents, both compounds exhibited a non-cataleptic action in rats and antagonized D-amphetamine-induced hyperlocomotion in mice, suggesting their possible atypical antipsychotic potency.

View Article and Find Full Text PDF

Clinical properties of atypical antipsychotics are based on their interaction with D(2) dopamine receptor and serotonin 5-HT(1A) and 5-HT(2A) receptors. As a part of our research program on new antipsychotics, we synthesized various derivatives of 1-cinnamyl-4-(2-methoxyphenyl)piperazines, and evaluated their affinities for D(2), 5-HT(1A), 5-HT(2A), and adrenergic (alpha(1)) receptors using radioligand-binding assays. In addition, we performed docking analysis using models for the D(2) and 5-HT(1A) receptors.

View Article and Find Full Text PDF

5-[3-(4-Arylpiperazin-1-yl)propyl]-1H-benzimidazoles and 5-[2-(4-arylpiperazin-1-yl)ethoxy]-1H-benzimidazoles were synthesized and their affinity for the D1, D2 and 5-HT1A receptors examined. They expressed a rather high affinity for the D2 dopamine receptor. The main features of ligand-D2 receptor interactions revealed by docking analyses were: salt bridge between piperazine ring protonated N1 and Asp 86, hydrogen bonds of ligand bezimidazole part with Ser 141, Ser 122 and His 189, edge-to-face interactions of arylpiperazine aromatic ring with Phe 178, Tyr 216 and Trp 182 and hydrogen bond between ethereal oxygen in ethylenoxy ligands and hydrogen of Phe 185 or Trp 115.

View Article and Find Full Text PDF

The docking of several 1-benzyl-4-arylpiperazines to the dopamine receptor (DAR) D2 was examined. The results demonstrated that the interaction of protonated N1 of the piperazine ring with Asp 86 (III.32) and edge-to-face interactions of the aromatic ring of the arylpiperazine part of the ligand with Phe 178 (VI.

View Article and Find Full Text PDF

Six active compounds, among previously synthesized and screened arylpiperazines, were selected and evaluated for the binding affinity to rat dopamine, serotonin and alpha(1) receptors. Two compounds with benztriazole group had a 5-HT(2A)/D(2) binding ratio characteristic for atypical neuroleptics (>1, pK(i) values). Compound 2, 5-[2-[4-(2,3-dimethyl-phenyl)-piperazin-1-yl]ethyl]1H-benzotriazole, expressed clozapine-like in vitro binding profile at D(2), 5-HT(2A) and alpha 1 receptors and a higher affinity for 5-HT(1A) receptors than clozapine.

View Article and Find Full Text PDF