Direct observation is a ground-truth measure for physical behavior, but the high cost limits widespread use. The purpose of this study was to develop and test machine learning methods to recognize aspects of physical behavior and location from videos of human movement: Adults (N = 26, aged 18-59 y) were recorded in their natural environment for two, 2- to 3-h sessions. Trained research assistants annotated videos using commercially available software including the following taxonomies: (1) sedentary versus non-sedentary (two classes); (2) activity type (four classes: sedentary, walking, running, and mixed movement); and (3) activity intensity (four classes: sedentary, light, moderate, and vigorous).
View Article and Find Full Text PDF