Sea lampreys (Petromyzon marinus) are basal vertebrates that exhibit reproductive control via a hypothalamic-pituitary-gonadal axis. The function and evolution of the hypothalamic and pituitary peptide hormones are well studied in this species, whereas the functions of classical sex steroid hormones have not been well established due to their low or non-detectable plasma levels. Sea lamprey pheromone 3-keto petromyzonol sulfate (3kPZS) has been shown to increase while 3-keto allocholic acid (3kACA) decreases plasma 15α-hydroxyprogesterone (15αP) levels in prespermiating males (PSM) but not in preovulatory females (POF).
View Article and Find Full Text PDFThe relationships between pheromone stimuli and neuropeptides are not well established in vertebrates due to the limited number of unequivocally identified pheromone molecules. The sea lamprey (Petromyzon marinus) is an advantageous vertebrate model to study the effects of pheromone exposure on neuropeptides since many pheromone molecules and neuropeptides have been identified in this species. Sexually mature male sea lamprey release pheromones 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3 keto-petromyzonol sulfate, 3kPZS) and 7α, 12α-dihydroxy-5α-cholan-3-one-24-oic acid (3-keto allocholic acid, 3kACA) that differentially regulate gonadotropin-releasing hormone (lGnRH) and steroid levels in sexually immature sea lamprey.
View Article and Find Full Text PDF