Publications by authors named "Skuli N"

Nuclear speckles are dynamic nuclear bodies characterized by high concentrations of factors involved in RNA production. Although the contents of speckles suggest multifaceted roles in gene regulation, their biological functions are unclear. Here we investigate speckle variation in human cancer, finding two main signatures.

View Article and Find Full Text PDF

Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein.

View Article and Find Full Text PDF

Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator to remove a poison intron, increasing the stability and abundance of mRNA and protein.

View Article and Find Full Text PDF

CD8+ T cell dysfunction impedes antitumor immunity in solid cancers, but the underlying mechanisms are diverse and poorly understood. Extracellular matrix (ECM) composition has been linked to impaired T cell migration and enhanced tumor progression; however, impacts of individual ECM molecules on T cell function in the tumor microenvironment (TME) are only beginning to be elucidated. Upstream regulators of aberrant ECM deposition and organization in solid tumors are equally ill-defined.

View Article and Find Full Text PDF

Unlabelled: Clear cell renal cell carcinoma (ccRCC) incidence has risen steadily over the last decade. Elevated lipid uptake and storage is required for ccRCC cell viability. As stored cholesterol is the most abundant component in ccRCC intracellular lipid droplets, it may also play an important role in ccRCC cellular homeostasis.

View Article and Find Full Text PDF

Unlabelled: Intratumoral hypoxia correlates with metastasis and poor survival in patients with sarcoma. Using an impedance sensing assay and a zebrafish intravital microinjection model, we demonstrated here that the hypoxia-inducible collagen-modifying enzyme lysyl hydroxylase PLOD2 and its substrate collagen type VI (COLVI) weaken the lung endothelial barrier and promote transendothelial migration. Mechanistically, hypoxia-induced PLOD2 in sarcoma cells modified COLVI, which was then secreted into the vasculature.

View Article and Find Full Text PDF

NSG-SGM3 and NOG-EXL mice combine severe immunodeficiency with transgenic expression of human myeloid stimulatory cytokines, resulting in marked expansion of myeloid populations upon humanization with CD34+ hematopoietic stem cells (HSCs). Humanized NSG-SGM3 mice typically develop a lethal macrophage activation syndrome and mast cell hyperplasia that limit their use in long-term studies (e.g.

View Article and Find Full Text PDF

Nuclear speckles are membrane-less bodies within the cell nucleus enriched in RNA biogenesis, processing, and export factors. In this study we investigated speckle phenotype variation in human cancer, finding a reproducible speckle signature, based on RNA expression of speckle-resident proteins, across >20 cancer types. Of these, clear cell renal cell carcinoma (ccRCC) exhibited a clear correlation between the presence of this speckle expression signature, imaging-based speckle phenotype, and clinical outcomes.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a typically fatal malignancy exhibiting genetic heterogeneity and limited therapy responses. We demonstrate here that HCCs consistently repress urea cycle gene expression and thereby become auxotrophic for exogenous arginine. Surprisingly, arginine import is uniquely dependent on the cationic amino acid transporter SLC7A1, whose inhibition slows HCC cell growth in vitro and in vivo.

View Article and Find Full Text PDF

The deregulation of energetic and cellular metabolism is a signature of cancer cells. Thus, drugs targeting cancer cell metabolism may have promising therapeutic potential. Previous reports demonstrate that the widely used normoglycemic agent, metformin, can decrease the risk of cancer in type 2 diabetics and inhibit cell growth in various cancers, including pancreatic, colon, prostate, ovarian, and breast cancer.

View Article and Find Full Text PDF

Deregulation of mRNA translation is a widespread characteristic of glioblastoma (GBM), aggressive malignant brain tumors that are resistant to conventional therapies. RNA-binding proteins (RBPs) play a critical role in translational regulation, yet the mechanisms and impact of these regulations on cancer development, progression and response to therapy remain to be fully understood. Here, we showed that hnRNP H/F RBPs are potent regulators of translation through several mechanisms that converge to modulate the expression and/or the activity of translation initiation factors.

View Article and Find Full Text PDF

Background: Deregulated glucose metabolism is a critical component of cancer growth and survival, clinically evident via FDG-PET imaging of enhanced glucose uptake in tumor nodules. Tumor cells utilize glucose in a variety of interconnected biochemical pathways to generate energy, anabolic precursors, and other metabolites necessary for growth. Glucagon-stimulated gluconeogenesis opposes glycolysis, potentially representing a pathway-specific strategy for targeting glucose metabolism in tumor cells.

View Article and Find Full Text PDF

Intrinsic resistance to current therapies, leading to dismal clinical outcomes, is a hallmark of glioblastoma multiforme (GBM), the most common and aggressive brain tumor. Understanding the underlying mechanisms of such malignancy is, therefore, an urgent medical need. Deregulation of the protein translation machinery has been shown to contribute to cancer initiation and progression, in part by driving selective translational control of specific mRNA transcripts involved in distinct cancer cell behaviors.

View Article and Find Full Text PDF

Unlabelled: Clear cell renal cell carcinoma (ccRCC) is characterized by large intracellular lipid droplets containing free and esterified cholesterol; however, the functional significance of cholesterol accumulation in ccRCC cells is unknown. We demonstrate that, surprisingly, genes encoding cholesterol biosynthetic enzymes are repressed in ccRCC, suggesting a dependency on exogenous cholesterol. Mendelian randomization analyses based on 31,000 individuals indicate a causal link between elevated circulating high-density lipoprotein (HDL) cholesterol and ccRCC risk.

View Article and Find Full Text PDF

High-risk neuroblastoma remains therapeutically challenging to treat, and the mechanisms promoting disease aggression are poorly understood. Here, we show that elevated expression of dihydrolipoamide S-succinyltransferase (DLST) predicts poor treatment outcome and aggressive disease in patients with neuroblastoma. DLST is an E2 component of the α-ketoglutarate (αKG) dehydrogenase complex, which governs the entry of glutamine into the tricarboxylic acid cycle (TCA) for oxidative decarboxylation.

View Article and Find Full Text PDF

Glycogen accumulation is a highly consistent, distinguishable characteristic of clear cell renal cell carcinoma (ccRCC). While elevated glycogen pools might be advantageous for ccRCC cells in nutrient-deprived microenvironments to sustain tumour viability, data supporting a biological role for glycogen in ccRCC are lacking. Here, we demonstrate that glycogen metabolism is not required for ccRCC proliferation in vitro nor xenograft tumour growth in vivo.

View Article and Find Full Text PDF

Objective: Medulloblastoma, the most common pediatric brain malignancy, has Sonic Hedgehog (SHH) and group 3 (Myc driven) subtypes that are associated with the activity of eukaryotic initiation factor 4E (eIF4E), a critical mediator of translation, and enhancer of zeste homolog 2 (EZH2), a histone methyltransferase and master regulator of transcription. Recent drug repurposing efforts in multiple solid and hematologic malignancies have demonstrated that eIF4E and EZH2 are both pharmacologically inhibited by the FDA-approved antiviral drug ribavirin. Given the molecular overlap between medulloblastoma biology and known ribavirin activity, the authors investigated the preclinical efficacy of repurposing ribavirin as a targeted therapeutic in cell and animal models of medulloblastoma.

View Article and Find Full Text PDF

The role of PPAR gamma (PPARγ) has been well characterized in the developmental process of adipogenesis, yet its aberrant expression patterns and functions in cancer subtypes are less understood. Although PPARγ has been recently demonstrated to play non-cell-autonomous roles in promoting bladder urothelial carcinoma (UC) progression, underlying mechanisms of the cell-intrinsic oncogenic activity remain unknown. Here, we report robust expression and nuclear accumulation of PPARγ in 47% of samples of patients with UC, exceeding mRNA expression patterns published by The Cancer Genome Atlas.

View Article and Find Full Text PDF

Nasopharyngeal carcinoma (NPC) is a squamous cell carcinoma with a proclivity for systemic dissemination, leading many patients to present with advanced stage disease and fail available treatments. There is a notable lack of targeted therapies for NPC, despite working knowledge of multiple proteins with integral roles in NPC cancer biology. These proteins include EZH2, Snail, eIF4E, and IMPDH, which are all overexpressed in NPC and correlated with poor prognosis.

View Article and Find Full Text PDF

Deregulated cell proliferation is an established feature of cancer, and altered tumor metabolism has witnessed renewed interest over the past decade, including the study of how cancer cells rewire metabolic pathways to renew energy sources and "building blocks" that sustain cell division. Microenvironmental oxygen, glucose, and glutamine are regarded as principal nutrients fueling tumor growth. However, hostile tumor microenvironments render O/nutrient supplies chronically insufficient for increased proliferation rates, forcing cancer cells to develop strategies for opportunistic modes of nutrient acquisition.

View Article and Find Full Text PDF

The growing cost of medical care worldwide, particularly in oncology, has incentivized researchers and physicians to repurpose clinically used drugs to alleviate the financial burden of drug development and offer potential new therapeutics. Recent works have demonstrated anticancer properties of the FDA-approved drug ribavirin, a synthetic guanosine analogue and antiviral molecule used over the past four decades for the treatment of hepatitis C. The efficacy of ribavirin in cancer has been explored through several preclinical models and ongoing clinical trials in multiple cancers, including acute myeloid leukemia, oropharyngeal squamous cell carcinoma, and metastatic breast cancer.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer. While the localized form of this disease can be treated surgically, advanced and metastatic stages are resistant to chemotherapies. Although more innovative treatments, such as targeted or immune-based therapies, exist, the need for new therapeutic options remains.

View Article and Find Full Text PDF

Purpose: High-grade glioma (HGG) treatment is limited by the inability of otherwise potentially efficacious drugs to penetrate the blood-brain barrier. We evaluate the unique intracavity delivery mode and translational potential of a blend of poly(-lactic acid-co-glycolic acid; PLGA) and poly(ethylene glycol; PEG) paste combining temozolomide and etoposide to treat surgically resected HGG.

Experimental Design: To prolong stability of temozolomide prodrug, combined drug release was quantitatively assessed from low pH-based PLGA/PEG using advanced analytic methods.

View Article and Find Full Text PDF

MYC amplification is common in Group 3 medulloblastoma and is associated with poor survival. Group 3 and Group 4 medulloblastomas are also known to have elevated levels of histone H3-lysine 27-tri-methylation (H3K27me3), at least in part due to high expression of the H3K27 methyltransferase enhancer of zest homologue 2 (EZH2), which can be regulated by MYC. We therefore examined whether MYC expression is associated with elevated EZH2 and H3K27me3 in medulloblastoma, and if high-MYC medulloblastomas are particularly sensitive to pharmacological EZH2 blockade.

View Article and Find Full Text PDF