Publications by authors named "Skruszewicz S"

One of the most challenging aspects of X-ray research is the delivery of liquid sample flows into the soft X-ray beam. Currently, cylindrical microjets are the most commonly used sample injection systems for soft X-ray liquid spectroscopy. However, they suffer from several drawbacks, such as complicated geometry due to their curved surface.

View Article and Find Full Text PDF

The development of the broad-bandwidth photon sources emitting in the soft X-ray range has attracted great attention for a long time due to the possible applications in high-resolution spectroscopy, nano-metrology, and material sciences. A high photon flux accompanied by a broad, smooth spectrum is favored for the applications such as near-edge X-ray absorption fine structure (NEXAFS), extended X-ray absorption fine structure (EXAFS), or XUV/X-ray coherence tomography (XCT). So far, either large-scale facilities or technologically challenging systems providing only limited photon flux in a single shot dominate the suitable sources.

View Article and Find Full Text PDF

In the present contribution, we use x-rays to monitor charge-induced chemical dynamics in the photoionized amino acid glycine with femtosecond time resolution. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay.

View Article and Find Full Text PDF

Many applications of two-dimensional materials such as graphene require the encapsulation in bulk material. While a variety of methods exist for the structural and functional characterization of uncovered 2D materials, there is a need for methods that image encapsulated 2D materials as well as the surrounding matter. In this work, we use extreme ultraviolet coherence tomography to image graphene flakes buried beneath 200 nm of silicon.

View Article and Find Full Text PDF

Short-pulse metrology and dynamic studies in the extreme ultraviolet (XUV) spectral range greatly benefit from interferometric measurements. In this contribution a Michelson-type all-reflective split-and-delay autocorrelator operating in a quasi amplitude splitting mode is presented. The autocorrelator works under a grazing incidence angle in a broad spectral range (10 nm - 1 μm) providing collinear propagation of both pulse replicas and thus a constant phase difference across the beam profile.

View Article and Find Full Text PDF

Above-threshold ionization spectra from cesium are measured as a function of the carrier-envelope phase (CEP) using laser pulses centered at 3.1  μm wavelength. The directional asymmetry in the energy spectra of backscattered electrons oscillates three times, rather than once, as the CEP is changed from 0 to 2π.

View Article and Find Full Text PDF

High-harmonic generation (HHG) in crystals offers a simple, affordable and easily accessible route to carrier-envelope phase (CEP) measurements, which scales favorably towards longer wavelengths. We present measurements of HHG in ZnO using few-cycle pulses at 3.1µm.

View Article and Find Full Text PDF

We present a laboratory beamline dedicated to nanoscale subsurface imaging using extreme ultraviolet coherence tomography (XCT). In this setup, broad-bandwidth extreme ultraviolet (XUV) radiation is generated by a laser-driven high-harmonic source. The beamline is able to handle a spectral range of 30-130 eV and a beam divergence of 10 mrad (full width at half maximum).

View Article and Find Full Text PDF

We present a modular extreme ultraviolet (XUV) spectrometer system optimized for a broad spectral range of 12-41 nm (30-99 eV) with a high spectral resolution of λ/Δλ ≳ 784 ± 89. The spectrometer system has several operation modes for (1) XUV beam inspection, (2) angular spectral analysis, and (3) imaging spectroscopy. These options allow for a versatile use in high harmonic spectroscopy and XUV beam analysis.

View Article and Find Full Text PDF

We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.

View Article and Find Full Text PDF

The original PDF version of this Article contained an error in Equation 1. The original HTML version of this Article contained errors in Equation 2 and Equation 4. These errors have now been corrected in both the PDF and the HTML versions of the Article.

View Article and Find Full Text PDF

A high-precision, single-shot, and real-time carrier-envelope phase (CEP) measurement at 1.8 μm laser wavelength based on stereographic photoelectron spectroscopy is presented. A precision of the CEP measurement of 120 mrad for each and every individual laser shot for a 1 kHz pulse train with randomly varying CEP is demonstrated.

View Article and Find Full Text PDF

In the strong-field photoemission from atoms, molecules, and surfaces, the fastest electrons emerge from tunneling and subsequent field-driven recollision, followed by elastic backscattering. This rescattering picture is central to attosecond science and enables control of the electron's trajectory via the sub-cycle evolution of the laser electric field. Here we reveal a so far unexplored route for waveform-controlled electron acceleration emerging from forward rescattering in resonant plasmonic systems.

View Article and Find Full Text PDF

Atomic clusters can serve as ideal model systems for exploring ultrafast (∼100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano-plasmas was limited to coherent x-ray imaging.

View Article and Find Full Text PDF

The presence of a weak second-harmonic field in an intense-laser ionization experiment affects the momentum-resolved electron yield, depending on the relative phase between the ω and the 2ω component. The proposed two-color "phase-of-the-phase spectroscopy" quantifies for each final electron momentum a relative-phase contrast (RPC) and a phase of the phase (PP) describing how much and with which phase lag, respectively, the yield changes as a function of the relative phase. Experimental results for RPC and PP spectra for rare gas atoms and CO_{2} are presented.

View Article and Find Full Text PDF

Strong laser fields can be used to trigger an ultrafast molecular response that involves electronic excitation and ionization dynamics. Here, we report on the experimental control of the spatial localization of the electronic excitation in the C_{60} fullerene exerted by an intense few-cycle (4 fs) pulse at 720 nm. The control is achieved by tailoring the carrier-envelope phase and the polarization of the laser pulse.

View Article and Find Full Text PDF

We show that rotational line spectra of molecular clusters with near zero permanent dipole moments can be observed using impulsive alignment. Aligned rotational wavepackets were generated by non-resonant interaction with intense femtosecond laser pump pulses and then probed using Coulomb explosion by a second, time-delayed femtosecond laser pulse. By means of a Fourier transform a rich spectrum of rotational eigenstates was derived.

View Article and Find Full Text PDF

We investigate subpicosecond dynamics of warm dense hydrogen at the XUV free-electron laser facility (FLASH) at DESY (Hamburg). Ultrafast impulsive electron heating is initiated by a ≤ 300-fs short x-ray burst of 92-eV photon energy. A second pulse probes the sample via x-ray scattering at jitter-free variable time delay.

View Article and Find Full Text PDF

We report on the dynamics of ultrafast heating in cryogenic hydrogen initiated by a ≲300  fs, 92 eV free electron laser x-ray burst. The rise of the x-ray scattering amplitude from a second x-ray pulse probes the transition from dense cryogenic molecular hydrogen to a nearly uncorrelated plasmalike structure, indicating an electron-ion equilibration time of ∼0.9  ps.

View Article and Find Full Text PDF