Dabrafenib is a potent ATP-competitive inhibitor for the V600 mutant b-rapidly accelerated fibrosarcoma (b-raf) kinase currently approved in the United States for the treatment of metastatic melanoma. Studies were conducted in human liver microsomes, recombinant human cytochrome P450 (P450) enzymes, and human hepatocytes to investigate the potential of dabrafenib and its major circulating metabolites to perpetrate pharmacokinetic drug-drug interactions (DDIs) as well as have their own pharmacokinetics affected (victim) by coadministered drugs. Dabrafenib metabolism was mediated by CYP2C8 (56% to 67%) and CYP3A4 (24%); in addition, it has demonstrated inhibition of CYP2C8, 2C9, 2C19, 3A4 (atorvastatin), and (nifedipine), with calculated IC50 values of 8.
View Article and Find Full Text PDFNine static models (seven basic and two mechanistic) and their respective cutoff values used for predicting cytochrome P450 3A (CYP3A) inhibition, as recommended by the US Food and Drug Administration and the European Medicines Agency, were evaluated using data from 119 clinical studies with orally administered midazolam as a substrate. Positive predictive error (PPE) and negative predictive error (NPE) rates were used to assess model performance, based on a cutoff of 1.25-fold change in midazolam area under the curve (AUC) by inhibitor.
View Article and Find Full Text PDFFew therapeutic strategies exist for the treatment of metastatic tumor cells in the brain because the blood-brain barrier (BBB) limits drug access. Thus the identification of molecular targets and accompanying BBB permeable drugs will significantly benefit brain metastasis patients. Polo-like kinase 1 (Plk1) is an attractive molecular target because it is only expressed in dividing cells and its expression is upregulated in many tumors.
View Article and Find Full Text PDFSeveral reports in the literature present the utility and value of in vitro drug-metabolizing enzyme inhibition data to predict in vivo drug-drug interactions in humans. A retrospective analysis has been conducted for 26 GlaxoSmithKline (GSK) drugs and drug candidates for which in vitro inhibition parameters have been determined, and clinical drug interaction information, from a total of 46 studies, is available. The dataset, for drugs with a diverse range of physiochemical properties, included both reversible and potentially irreversible cytochrome P450 inhibitors for which in vitro inhibition parameters (IC(50) or K(I)/k(inact) as appropriate) were determined using standardized methodologies.
View Article and Find Full Text PDFTime-dependent inhibition (TDI) of cytochrome P450 (P450) enzymes caused by new molecular entities (NMEs) is of concern because such compounds can be responsible for clinically relevant drug-drug interactions (DDI). Although the biochemistry underlying mechanism-based inactivation (MBI) of P450 enzymes has been generally understood for several years, significant advances have been made only in the past few years regarding how in vitro time-dependent inhibition data can be used to understand and predict clinical DDI. In this article, a team of scientists from 16 pharmaceutical research organizations that are member companies of the Pharmaceutical Research and Manufacturers of America offer a discussion of the phenomenon of TDI with emphasis on the laboratory methods used in its measurement.
View Article and Find Full Text PDFPulmonary cytochrome P450 2F3 (CYP2F3) catalyzes the dehydrogenation of the pneumotoxin 3-methylindole (3MI) to an electrophilic intermediate, 3-methyleneindolenine, which is responsible for the toxicity of the parent compound. Members of the CYP2F subfamily are the only enzymes known to exclusively dehydrogenate 3MI, without detectable formation of oxygenation products. Thus, CYP2F3 is an attractive model to study dehydrogenation mechanisms.
View Article and Find Full Text PDFZafirlukast is a leukotriene antagonist indicated for the treatment of mild to moderate asthma, but the drug has been associated with occasional idiosyncratic hepatotoxicity. Structurally, zafirlukast is similar to 3-methylindole because it contains an N-methylindole moiety that has a 3-alkyl substituent on the indole ring. The results presented here describe the metabolic activation of zafirlukast via a similar mechanism to that described for 3-methylindole.
View Article and Find Full Text PDFTransfected BEAS-2B cells that express different cytochrome P450 enzymes were used to assess whether human bronchial epithelial cell lines are target cells for 3-methylindole (3MI)-induced damage. Four different transfected BEAS-2B lines overexpressing P450s 2A6, 3A4, 2F1, and 2E1 (B-CMV2A6, B-CMV3A4, B-CMV2F1, and B-CMV2E1), respectively, were compared. The B-CMV2F1 and B-CMV3A4 cells were the most susceptible to 3MI-mediated cytotoxicity, measured by leakage of lactate dehydrogenase into the medium after a 48-h incubation.
View Article and Find Full Text PDFDrug Metab Dispos
October 1999
Chem Res Toxicol
November 1998
Cytochrome P450 enzymes can potentially oxygenate 3-methylindole to form 2,3-epoxy-3-methylindoline which could rearrange to the stable metabolite 3-methyloxindole or open to form 3-hydroxy-3-methylindolenine, a putative electrophilic imine. The purpose of the current work was to determine if the imine was formed, and to characterize it via its adducts with thiol nucleophiles. Thiols were added to incubations of goat lung microsomes with 3-methylindole and deuterated analogues of 3-methylindole to trap the imine intermediate as its thioether conjugates.
View Article and Find Full Text PDFThe existence of a cytochrome P450-dependent 2,3-epoxide of the potent pneumotoxin 3-methylindole was indirectly confirmed using stable isotope techniques and mass spectrometry. Determination of hydride shift and incorporation of labeled oxygen in 3-methyloxindole and 3-hydroxy-3-methyloxindole, metabolites that may be in part dependent on the presence of the epoxide, were utilized as indicators of the epoxide's existence. One mechanism for the formation of 3-methyloxindole involves cytochrome P450-mediated epoxidation followed by ring opening requiring a hydride shift from C-2 to C-3.
View Article and Find Full Text PDF