Publications by authors named "Skander Jemaa"

Purpose: Artificial intelligence can reduce the time used by physicians on radiological assessments. For F-fluorodeoxyglucose-avid lymphomas, obtaining complete metabolic response (CMR) by end of treatment is prognostic.

Methods: Here, we present a deep learning-based algorithm for fully automated treatment response assessments according to the Lugano 2014 classification.

View Article and Find Full Text PDF

Deep neural networks (DNNs) have recently showed remarkable performance in various computer vision tasks, including classification and segmentation of medical images. Deep ensembles (an aggregated prediction of multiple DNNs) were shown to improve a DNN's performance in various classification tasks. Here we explore how deep ensembles perform in the image segmentation task, in particular, organ segmentations in CT (Computed Tomography) images.

View Article and Find Full Text PDF

Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in micro-computed tomography (micro-CT) scans of mouse models of non-small cell lung cancer and lung fibrosis. Over 3000 scans acquired across multiple studies were used to train/validate a 3D U-net lung segmentation model and a Support Vector Machine (SVM) classifier to segment individual lung tumors. The U-net lung segmentation algorithm can be used to estimate changes in soft tissue volume within lungs (primarily tumors and blood vessels), whereas the trained SVM is able to discriminate between tumors and blood vessels and identify individual tumors.

View Article and Find Full Text PDF

Purpose: Positron emission tomography (PET)/ computed tomography (CT) has been extensively used to quantify metabolically active tumors in various oncology indications. However, FDG-PET/CT often encounters false positives in tumor detection due to fluorodeoxyglucose (FDG) accumulation from the heart and bladder that often exhibit similar FDG uptake as tumors. Thus, it is necessary to eliminate this source of physiological noise.

View Article and Find Full Text PDF

F-Fluorodeoxyglucose-positron emission tomography (FDG-PET) is commonly used in clinical practice and clinical drug development to identify and quantify metabolically active tumors. Manual or computer-assisted tumor segmentation in FDG-PET images is a common way to assess tumor burden, such approaches are both labor intensive and may suffer from high inter-reader variability. We propose an end-to-end method leveraging 2D and 3D convolutional neural networks to rapidly identify and segment tumors and to extract metabolic information in eyes to thighs (whole body) FDG-PET/CT scans.

View Article and Find Full Text PDF