Int J Parasitol Drugs Drug Resist
January 2025
In all organisms, the biotransformation of xenobiotics to less toxic and more hydrophilic compounds represents an effective defense strategy. In pathogens, the biotransformation of drugs (used for their elimination from the host) may provide undesirable protective effects that could potentially compromise the drug's efficacy. Accordingly, increased drug deactivation via accelerated biotransformation is now considered as one of the mechanisms of drug resistance.
View Article and Find Full Text PDFAldo-keto reductases (AKRs), a superfamily of NADP(H)-dependent oxidoreductases, catalyze the oxidoreduction of a wide variety of eobiotic and xenobiotic aldehydes and ketones. In mammals, AKRs play essential roles in hormone and xenobiotic metabolism, oxidative stress, and drug resistance, but little is known about these enzymes in the parasitic nematode Haemonchus contortus. In the present study, 22 AKR genes existing in the H.
View Article and Find Full Text PDFCarbonyl-reducing enzymes (CREs) catalyse the reduction of carbonyl groups in many eobiotic and xenobiotic compounds in all organisms, including helminths. Previous studies have shown the important roles of CREs in the deactivation of several anthelmintic drugs (e.g.
View Article and Find Full Text PDFAnthelmintics are drugs used for the treatment and prevention of diseases caused by parasitic worms (helminths). While the importance of anthelmintics in human as well as in veterinary medicine is evident, they represent emerging contaminants of the environment. Human anthelmintics are mainly used in tropical and sub-tropical regions, while veterinary anthelmintics have become frequently-occurring environmental pollutants worldwide due to intensive agri- and aquaculture production.
View Article and Find Full Text PDFMost drugs used in the treatment of helminthiasis in humans and animals have lost their efficacy due to the development of drug-resistance in helminths. Moreover, since anthelmintics, like many pharmaceuticals, are now recognized as hazardous contaminants of the environment, returning to medicinal plants and their products represents an environmentally friendly way to treat helminthiasis. The goal of the present study was to test the anthelminthic activity of methanol extracts of eight selected European ferns from the genera Dryopteris, Athyrium and Blechnum against the nematode Haemonchus contortus, a widespread parasite of small ruminants.
View Article and Find Full Text PDFAlbendazole (ABZ), a broad-spectrum anthelmintic drug frequently used in livestock against parasitic worms (helminths), enters the environment mainly via faeces of treated animals left in the pastures or used as dung for field fertilization. To obtain information about the subsequent fate of ABZ, the distribution of ABZ and its metabolites in the soil around faeces along with uptake and effects in plants were monitored under real agricultural conditions. Sheep were treated with a recommended dose of ABZ; faeces were collected and used to fertilize fields with fodder plants.
View Article and Find Full Text PDFShort-chain dehydrogenases/reductases (SDRs) regulate the activities of many hormones and other signaling molecules and participate in the deactivation of various carbonyl-bearing xenobiotics. Nevertheless, knowledge about these important enzymes in helminths remains limited. The aim of our study was to characterize the SDR superfamily in the parasitic nematode Haemonchus contortus.
View Article and Find Full Text PDFAlbendazole (ABZ) is an anthelmintic frequently used to treat haemonchosis, a common parasitosis of ruminants caused by the gastrointestinal nematode Haemonchus contortus. This parasite is able to protect itself against ABZ via the formation of inactive ABZ-glycosides. The present study was designed to deepen the knowledge about the role of UDP-glycosyltransferases (UGTs) in ABZ glycosylation in H.
View Article and Find Full Text PDFUridine diphosphate sugar-utilizing glycosyltransferases (UGTs) are an enzyme superfamily that catalyzes glycosyl residues transfer from activated nucleotide sugars to acceptor molecules. In addition to various endogenous compounds, numerous xenobiotics are substrates of UGTs. As the glycosides formed are generally less active/toxic and more hydrophilic than aglycones, UGTs effectively protect organisms from potentially harmful xenobiotics.
View Article and Find Full Text PDFAs a widely distributed parasitic nematode of ruminants, Haemonchus contortus has become resistant to most anthelmintic classes, there has been a major demand for new compounds against H. contortus and related nematodes. Recent phenotypic screening has revealed two compounds, designated as BLK127 and HBK4, that are active against H.
View Article and Find Full Text PDFVeterinary anthelmintics excreted from treated animals pass to soil, subsequently to plants and then to their consumers. This circulation might have various consequences, including drug-resistance promotion in helminths. The present study was designed to follow the effect of the environmental circulation of the common anthelmintic drug albendazole (ABZ) in real farm conditions on the parasitic nematode Haemonchus contortus in vivo.
View Article and Find Full Text PDFHaemonchus contortus is a parasitic nematode of ruminants which causes significant losses to many farmers worldwide. Since the drugs currently in use for the treatment of haemonchosis are losing their effectiveness due to the drug-resistance of this nematode, a new or repurposed drug is highly needed. As the antipsychotic drug sertraline (SRT) has been shown to be effective against the parasitic nematodes Trichuris muris, Ancylostoma caninum and Schistosoma mansoni, the aim of the present study was to evaluate the possible effect of SRT on H.
View Article and Find Full Text PDFThe parasitic gastrointestinal nematode Haemonchus contortus causes serious economic losses to agriculture due to infection and disease in small ruminant livestock. The development of new therapies requires appropriate viability testing, with methods nowadays relying on larval motility or development using procedures that involve microscopy. None of the existing biochemical methods, however, are performed in adults, the target stage of the anthelmintic compounds.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
October 2021
Glutathione peroxidase 7 (GPx7) acts as an intracellular stress sensor/transmitter and plays an important role in adipocyte differentiation and the prevention of obesity related pathologies. For this reason, finding the regulatory mechanisms that control GPx7 expression is of great importance. As microRNAs (miRNAs) could participate in the regulation of GPx7 expression, we studied the inhibition of GPx7 expression by four selected miRNAs with relation to obesity and adipogenesis.
View Article and Find Full Text PDFAlthough manure is an important source of minerals and organic compounds it represents a certain risk of spreading the veterinary drugs in the farmland and their permeation to human food. We tested the uptake of the anthelmintic drug fenbendazole (FBZ) by soybean, a common crop plant, from the soil and its biotransformation and accumulation in different soybean organs, including beans. Soybeans were cultivated in vitro or grown in a greenhouse in pots.
View Article and Find Full Text PDFThe nematode , a gastrointestinal parasite of ruminants, can severely burden livestock production. Although anthelmintics are the mainstay in the treatment of haemonchosis, their efficacy diminishes due to drug-resistance development in An increased anthelmintics inactivation via biotransformation belongs to a significant drug-resistance mechanism in . UDP-glycosyltransferases (UGTs) participate in the metabolic inactivation of anthelmintics and other xenobiotic substrates through their conjugation with activated sugar, which drives the elimination of the xenobiotics due to enhanced solubility.
View Article and Find Full Text PDFAlbendazole (ABZ), a widely used anthelmintic drug, enters the environment mainly via livestock excrements. To evaluate the environmental impact of ABZ, the knowledge of its uptake, effects and metabolism in all non-target organisms, including plants, is essential. The present study was designed to identify the metabolic pathway of ABZ and to test potential ABZ phytotoxicity in fodder plant alfalfa, with seeds and in vitro regenerants used for these purposes.
View Article and Find Full Text PDFIn recent years interest has grown in the occurrence and the effects of pharmaceuticals in the environment. The aim of this work is to evaluate the risk of fertilizing crops with manure from livestock treated with anthelmintics. The present study was designed to follow the fate of the commonly used anthelmintic drug, ivermectin (IVM) and its metabolites in soybeans ( (L.
View Article and Find Full Text PDFThe efficacy of anthelmintic therapy of farm animals rapidly decreases due to drug resistance development in helminths. In resistant isolates, the increased expression and activity of drug-metabolizing enzymes (DMEs), e.g.
View Article and Find Full Text PDFThe sesquiterpenes alantolactone (ATL) and germacrone (GER) are potential anticancer agents of natural origin. Their toxicity and biological activity have been evaluated using the differentiated HepaRG (dHepaRG) cells, a hepatocyte-like model. The half-maximal inhibitory concentrations of cell viability after 24-h treatment of dHepaRG cells are approximately 60 µM for ATL and 250 µM for GER.
View Article and Find Full Text PDFThe anthelmintic drug ivermectin (IVM), used frequently especially in veterinary medicine, enters the environment mainly via excrements in pastures and could negatively affect non-target organisms including plants. The present study was designed to follow up on our previous investigations into IVM metabolism and its effects in the common meadow plant ribwort plantain (Plantago lanceolata L.) during long-term exposure of both cell suspensions and whole plant regenerants.
View Article and Find Full Text PDFThe control of gastrointestinal nematodes (GINs), the most abundant and serious parasites of livestock, has become difficult because of the limited number of available drugs and fast development of drug resistance. Thus, considerable efforts have been devoted to developing new anthelmintics that are efficient against nematodes, especially resistant species. Here, we summarize the most recent results using various approaches: target-based or high-throughput screening (HTS) of compound libraries; the synthesis of new derivatives or new combinations of current anthelmintics; the repurposing of drugs currently approved for other indications; and lastly, the identification of active plant products.
View Article and Find Full Text PDF