For efficient solar energy harvesting, various engineering strategies to strengthen visible-light responsivity of ZnO photocatalyst is under intensive investigation. In this work, a new ternary C-ZnO/MoS/mesoporous carbon nanocomposite was successfully prepared by a two-step solution-processed synthesis protocol. The ternary composite exhibits a well-interconnected 3D mesoporous microstructure assembled by carbon nanosheets, which is loaded with quasi 0D ZnO nanoparticles and 2D MoS nanosheets.
View Article and Find Full Text PDFWe report the facile and economic preparation of two-dimensional (2D) and 0D MoSe nanostructures based on systematic and non-toxic top-down strategies. We demonstrate the intrinsic peroxidase-like activity of these MoSe nanostructures. The catalytic processes begin with facilitated decomposition of HO by using MoSe nanostructures as peroxidase mimetics.
View Article and Find Full Text PDFPhotoluminescent zero-dimensional (0D) quantum dots (QDs) derived from transition metal dichalcogenides, particularly molybdenum disulfide, are presently in the spotlight for their advantageous characteristics for optoelectronics, imaging, and sensors. Nevertheless, up to now, little work has been done to synthesize and explore photoluminescent 0D WS QDs, especially by a bottom-up strategy without using usual toxic organic solvents. In this work, we report a facile bottom-up strategy to synthesize high-quality water-soluble tungsten disulfide (WS) QDs through hydrothermal reaction by using sodium tungstate dihydrate and L-cysteine as W and S sources.
View Article and Find Full Text PDFNanoscale transition-metal dichalcogenide materials showed promising potential for visible-light responsive photocatalysis. Here, we report our investigations on the synthesis of heterodimensional nanostructures of two-dimensional (2D) ultrathin MoS nanosheets interspersed with ZnO nanoparticles by using a facile two-step method consisting of sonication-aided exfoliation technique followed by a wet chemical process. The photocatalytic activity of the nanocomposites was examined by studying the degradation of different organic dye pollutants and tetracycline, a common antibiotic, under visible-light irradiation.
View Article and Find Full Text PDFThe synthesis of noble metal/semiconductor hybrid nanostructures for enhanced catalytic or superior optical properties has attracted a lot of attention in recent years. In this study, a facile and all-solution-processed synthetic route was employed to demonstrate an Au/ZnO platform with plasmonic-enhanced UV/Vis catalytic properties while retaining strengthened luminescent properties. The visible-light response of photocatalysis is supported by localized surface plasmon resonance (LSPR) excitations while the enhanced performance under UV is aided by charge separation and strong absorption.
View Article and Find Full Text PDFWe exploit the utilization of two-dimensional (2D) molybdenum oxide nanoflakes as a co-catalyst for ZnO nanorods (NRs) to enhance their photocatalytic performance. The 2D nanoflakes of orthorhombic α-MoO3 were synthesized through a sonication-aided exfoliation technique. The 2D MoO3 nanoflakes can be further converted to substoichiometric quasi-metallic MoO3-x by using UV irradiation.
View Article and Find Full Text PDFVertically aligned ZnO nanorods (NRs) on aluminum-doped zinc oxide (AZO) substrates were fabricated by a single-step aqueous solution method at low temperature. In order to optimize optical quality, the effects of annealing on optical and structural properties were investigated by scanning electron microscopy, X-ray diffraction, photoluminescence (PL), and Raman spectroscopy. We found that the annealing temperature strongly affects both the near-band-edge (NBE) and visible (defect-related) emissions.
View Article and Find Full Text PDF