Congenital disorders of glycosylation (CDG) are rare genetic disorders with a spectrum of clinical manifestations caused by abnormal N-glycosylation of secreted and cell surface proteins. Over 130 genes are implicated and next generation sequencing further identifies potential disease drivers in affected individuals. However, functional testing of these variants is challenging, making it difficult to distinguish pathogenic from non-pathogenic events.
View Article and Find Full Text PDFSomatic hotspot mutations and structural amplifications and fusions that affect fibroblast growth factor receptor 2 (encoded by FGFR2) occur in multiple types of cancer. However, clinical responses to FGFR inhibitors have remained variable, emphasizing the need to better understand which FGFR2 alterations are oncogenic and therapeutically targetable. Here we apply transposon-based screening and tumour modelling in mice, and find that the truncation of exon 18 (E18) of Fgfr2 is a potent driver mutation.
View Article and Find Full Text PDFEffective treatment of invasive lobular carcinoma (ILC) of the breast is hampered by late detection, invasive growth, distant metastasis, and poor response to chemotherapy. Phosphoinositide 3-kinase (PI3K) signaling, one of the major druggable oncogenic signaling networks, is frequently activated in ILC. We investigated treatment response and resistance to AZD8055, an inhibitor of mammalian target of rapamycin (mTOR), in the (KEP) mouse model of metastatic ILC.
View Article and Find Full Text PDFCancer-associated systemic inflammation is strongly linked to poor disease outcome in patients with cancer. For most human epithelial tumour types, high systemic neutrophil-to-lymphocyte ratios are associated with poor overall survival, and experimental studies have demonstrated a causal relationship between neutrophils and metastasis. However, the cancer-cell-intrinsic mechanisms that dictate the substantial heterogeneity in systemic neutrophilic inflammation between tumour-bearing hosts are largely unresolved.
View Article and Find Full Text PDFIn human cancers, FGFR signaling is frequently hyperactivated by deregulation of FGF ligands or by activating mutations in the FGFR receptors such as gene amplifications, point mutations, and gene fusions. As such, FGFR inhibitors are considered an attractive therapeutic strategy for patients with mutations in FGFR family members. We previously identified as a key driver of invasive lobular carcinoma (ILC) in an insertional mutagenesis screen using the transposon system.
View Article and Find Full Text PDFInvasive lobular carcinoma (ILC) is the second most common breast cancer subtype and accounts for 8-14% of all cases. Although the majority of human ILCs are characterized by the functional loss of E-cadherin (encoded by CDH1), inactivation of Cdh1 does not predispose mice to develop mammary tumors, implying that mutations in additional genes are required for ILC formation in mice. To identify these genes, we performed an insertional mutagenesis screen using the Sleeping Beauty transposon system in mice with mammary-specific inactivation of Cdh1.
View Article and Find Full Text PDFInsertional mutagenesis using engineered transposons is a potent forward genetic screening technique used to identify cancer genes in mouse model systems. In the analysis of these screens, transposon insertion sites are typically identified by targeted DNA-sequencing and subsequently assigned to predicted target genes using heuristics. As such, these approaches provide no direct evidence that insertions actually affect their predicted targets or how transcripts of these genes are affected.
View Article and Find Full Text PDFLarge-scale sequencing studies are rapidly identifying putative oncogenic mutations in human tumors. However, discrimination between passenger and driver events in tumorigenesis remains challenging and requires in vivo validation studies in reliable animal models of human cancer. In this study, we describe a novel strategy for in vivo validation of candidate tumor suppressors implicated in invasive lobular breast carcinoma (ILC), which is hallmarked by loss of the cell-cell adhesion molecule E-cadherin.
View Article and Find Full Text PDFRetroviral and transposon-based insertional mutagenesis (IM) screens are widely used for cancer gene discovery in mice. Exploiting the full potential of IM screens requires methods for high-throughput sequencing and mapping of transposon and retroviral insertion sites. Current protocols are based on ligation-mediated PCR amplification of junction fragments from restriction endonuclease-digested genomic DNA, resulting in amplification biases due to uneven genomic distribution of restriction enzyme recognition sites.
View Article and Find Full Text PDFActive small molecules have a high potential for the development into new anti-cancer drugs. Here we analysed the effect of the natural occurring fusicoccanes, Fusicoccin-A (FC), Ophiobolin-A (OPH-A) and Ophiobolin-I (OPH-I) on various tumor cell lines. Both FC and OPH-A inhibit tumor cell growth efficiently, in contrast to OPH-I.
View Article and Find Full Text PDF