Publications by authors named "Sjors Bakels"

Small differences in the structure and subsequent reactivity of glyphosate complexes can have a highly consequential impact due to the enormous quantities of glyphosate used globally. The gas phase metal speciation of glyphosate and its abundant metabolite, aminomethylphosphonic acid (AMPA), were determined using cross-platform electrospray ionisation ion mobility mass spectrometry. Monomeric [M + L - H] complexes, and both larger, and/or higher order clusters formed with divalent metals (M = Mg, Ca, Sr, Ba, Mn, Co, Cu, and Zn; and L = glyphosate and AMPA).

View Article and Find Full Text PDF

Understanding and controlling peptide aggregation are critical due to its neurotoxic implications. However, structural information about the key intermediates, the oligomers, is obscured by a cascade of coinciding events occurring at various time and energy scales, which results in complex and heterogeneous mixtures of oligomers. To address this challenge, we have developed the Photo-Synapt, a novel, multidimensional spectrometer that integrates ion mobility mass spectrometry with infrared (IR) action spectroscopy within a single experiment.

View Article and Find Full Text PDF

Peptide and protein aggregation involves the formation of oligomeric species, but the complex interplay between oligomers of different conformations and sizes complicates their structural elucidation. Using ion mobility mass spectrometry (IM-MS), we aim to reveal these early steps of aggregation for the Ac-PHF6-NH peptide segment from tau protein, thereby distinguishing between different oligomeric species and gaining an understanding of the aggregation pathway. An important factor that is often neglected, but which can alter the aggregation propensity of peptides, is the terminal capping groups.

View Article and Find Full Text PDF

Resonance-stabilized radicals are considered as possible intermediates in the formation of polycyclic aromatic hydrocarbons (PAHs) in interstellar space. Here, we investigate the fulvenallenyl radical, the most stable CH isomer by IR/UV ion dip spectroscopy employing free electron laser radiation in the mid-infrared region between 550 and 1750 cm. The radical is generated by pyrolysis from phthalide.

View Article and Find Full Text PDF

Peptide segments with phenylalanine residues are commonly found in proteins that are related to neurodegenerative diseases. However, the self-assembly of phenylalanine-based peptides can be also functional. Peptides containing phenylalanine residues with different side caps, composition, and chemical alteration can form different types of nanostructures that find many applications in technology and medicine.

View Article and Find Full Text PDF

Small cyclic peptides containing phenylalanine residues are prone to aggregate in the gas phase into highly hydrophobic chains. A combination of laser desorption, mass spectrometry and conformational selective IR-UV action spectroscopy allows us to obtain detailed structural insights into the formation processes of the cyclic L-phenylalanyl-L-phenylalanine dipeptide (named cyclo-FF) aggregates. The rigid properties of cyclo-FF result in highly resolved IR spectra for the smaller clusters ( ≤ 3) and corresponding conformational assignments.

View Article and Find Full Text PDF

We report infrared spectra of xylylene isomers in the gas phase, using free electron laser (FEL) radiation. All xylylenes were generated by flash pyrolysis. The IR spectra were obtained by monitoring the ion dip signal, using a IR/UV double resonance scheme.

View Article and Find Full Text PDF

Gas-phase, double resonance IR spectroscopy has proven to be an excellent approach to obtain structural information on peptides ranging from single amino acids to large peptides and peptide clusters. In this review, we discuss the state-of-the-art of infrared action spectroscopy of peptides in the far-IR and THz regime. An introduction to the field of far-IR spectroscopy is given, thereby highlighting the opportunities that are provided for gas-phase research on neutral peptides.

View Article and Find Full Text PDF

The three isomers of the xylyl radical, CH, are possible intermediates in the formation of soot and polycyclic aromatic hydrocarbons (PAH). Their infrared spectra have been recorded by IR/UV ion dip spectroscopy using free electron laser radiation. The radicals were generated by flash pyrolysis from the corresponding nitrites and resonantly ionized via the D ← D transition around 310 nm.

View Article and Find Full Text PDF

The spontaneous aggregation of proteins and peptides is widely studied owing to its relation to neurodegenerative diseases. To understand the underlying principles of peptide aggregation, elucidation of structure and structural changes upon their formation is key. This level of detail can be obtained by studying the peptide self-assembly in the gas phase.

View Article and Find Full Text PDF

Peptide aggregation, the self-assembly of peptides into structured beta-sheet fibril structures, is driven by a combination of intra- and intermolecular interactions. Here, the interplay between intramolecular and formed inter-sheet hydrogen bonds and the effect of dispersion interactions on the formation of neutral, isolated, peptide dimers is studied using infrared action spectroscopy. Therefore, four different homo- and heterogenous dimers resulting from three different alanine-based model peptides have been formed under controlled and isolated conditions.

View Article and Find Full Text PDF

ortho-Benzyne, a Kekulé-type biradical is considered to be a key intermediate in the formation of polycyclic aromatic hydrocarbons (PAH) and soot. In the present work we study the ortho-benzyne self-reactions in a hot microreactor and identify the high-temperature products by IR/UV spectroscopy and by photoion mass-selected threshold photoelectron spectroscopy (ms-TPES) in a free jet. Ms-TPES confirms formation of ortho-benzyne as generated from benzocyclobutenedione, as well as benzene, biphenylene, diacetylene, and acetylene, originating from the reaction o-CH → HCC-CCH + CH, and CH.

View Article and Find Full Text PDF

We investigate the self-reaction of benzyl, C H , in a high-temperature pyrolysis reactor. The work is motivated by the observation that resonance-stabilized benzyl radicals can accumulate in reactive environments and contribute to the formation of polycyclic aromatic hydrocarbons (PAHs) and soot. Reaction products are detected by IR/UV ion dip spectroscopy, using infrared radiation from the free electron laser FELIX, and are identified by comparison with computed spectra.

View Article and Find Full Text PDF