Motivation: Selective sweeps can successfully be distinguished from neutral genetic data using summary statistics and likelihood-based methods that analyze single nucleotide polymorphisms (SNPs). However, these methods are sensitive to confounding factors, such as severe population bottlenecks and old migration. By virtue of machine learning, and specifically convolutional neural networks (CNNs), new accurate classification models that are robust to confounding factors have been recently proposed.
View Article and Find Full Text PDF