Multivalency as an interaction principle is widely utilized in nature. It enables specific and strong binding by multiple weak interactions through enhanced avidity and is a core process in immune recognition and cellular signaling, which is also a current concept in drug design. Here, we use the high signals from plasmon-enhanced fluorescence of nanoparticles to extract binding kinetics and dynamics of multivalent interactions on the single-molecule level and in real time.
View Article and Find Full Text PDFSingle-molecule fluorescence has revealed a wealth of biochemical processes but does not give access to submillisecond dynamics involved in transient interactions and molecular dynamics. Here we overcome this bottleneck and demonstrate record-high photon count rates of >10 photons/s from single plasmon-enhanced fluorophores. This is achieved by combining two conceptual novelties: first, we balance the excitation and decay rate enhancements by the antenna's volume, resulting in maximum fluorescence intensity.
View Article and Find Full Text PDFWe have established a label-free plasmonic platform that monitors proteolytic activity in real time. The sensor consists of a random array of gold nanorods that are functionalized with a design peptide that is specifically cleaved by thrombin, resulting in a blueshift of the longitudinal plasmon. By monitoring the plasmon of many individual nanorods, we determined thrombin's proteolytic activity in real time and inferred relevant kinetic parameters.
View Article and Find Full Text PDFThe formation of a protein corona, where proteins spontaneously adhere to the surface of nanomaterials in biological environments, leads to changes in their physicochemical properties and subsequently affects their intended biomedical functionalities. Most current methods to study protein corona formation are ensemble-averaging and either require fluorescent labeling, washing steps, or are only applicable to specific types of particles. Here we introduce real-time all-optical nanoparticle analysis by scattering microscopy (RONAS) to track the formation of protein corona in full serum, at the single-particle level, without any labeling.
View Article and Find Full Text PDFBiofunctionalized nanoparticles are increasingly used in biomedical applications including sensing, targeted delivery, and hyperthermia. However, laser excitation and associated heating of the nanomaterials may alter the structure and interactions of the conjugated biomolecules. Currently no method exists that directly monitors the local temperature near the material's interface where the conjugated biomolecules are.
View Article and Find Full Text PDF