Background: Dynamic computed tomography (CT) angiography of the abdomen provides perfusion information and characteristics of the tissues present in the abdomen. This information could potentially help characterize liver metastases. However, radiation dose has to be relatively low for the patient, causing the images to have very high noise content.
View Article and Find Full Text PDFBackground: Computer algorithms that simulate lower-doses computed tomography (CT) images from clinical-dose images are widely available. However, most operate in the projection domain and assume access to the reconstruction method. Access to commercial reconstruction methods may often not be available in medical research, making image-domain noise simulation methods useful.
View Article and Find Full Text PDFBackground: Simulated computed tomography (CT) images allow for knowledge of the underlying ground truth and for easy variation of imaging conditions, making them ideal for testing and optimization of new applications or algorithms. However, simulating all processes that affect CT images can result in simulations that are demanding in terms of processing time and computer memory. Therefore, it is of interest to determine how much the simulation can be simplified while still achieving realistic results.
View Article and Find Full Text PDF