Publications by authors named "Sjoerd Hak"

Cancer immunotherapy has evolved significantly over the last decade, with therapeutics targeting the adaptive immune system showing exciting effects in clinics. Yet, the modulation of the innate immune system, particularly the tumor-associated innate immune cells which are an integral part of immune responses in cancer, remains less understood. The arginase 1 (Arg1) pathway is a pivotal metabolic pathway that tumor-associated innate immune cells exploit to create an immunosuppressive tumor microenvironment, leading to the evasion of immune surveillance.

View Article and Find Full Text PDF

Background: This study was conducted to investigate whether mRNA vaccine technology could be adapted for the ectothermic vertebrate Atlantic salmon (). Lipid nanoparticle (LNP) technology has been developed and optimized for mRNA vaccines in mammals, stabilizing mRNA and facilitating its delivery into cells. However, its utility at the temperatures and specific biological environments present in ectotherms remains unclear.

View Article and Find Full Text PDF

Production and storage of synthetic mRNA can introduce a variety of byproducts which reduce the overall integrity and functionality of mRNA vaccines and therapeutics. mRNA integrity is therefore designated as a critical quality attribute which must be evaluated with state-of-the-art analytical methods before clinical use. The current study first demonstrates the effect of heat degradation on transcript translatability and then describes a novel enzymatic approach to assess the integrity of conventional mRNA and long self-amplifying mRNA.

View Article and Find Full Text PDF

Polyethylene glycol (PEG) conjugation (PEGylation) is a well-established strategy to improve the pharmacokinetic and biocompatibility properties of a wide variety of nanomedicines and therapeutic peptides and proteins. This broad use makes PEG an attractive 'allround' candidate marker for the biodistribution of such PEGylated compounds. This paper presents the development of a novel strategy for PEG quantification in biological matrices.

View Article and Find Full Text PDF

Background: Myeloid cells play an essential role in cancer metastasis. The phenotypic diversity of these cells during cancer development has attracted great interest; however, their functional heterogeneity and plasticity have limited their role as prognostic markers and therapeutic targets.

Methods: To identify markers associated with myeloid cells in metastatic tumours, we compared transcriptomic data from immune cells sorted from metastatic and non-metastatic mammary tumours grown in BALB/cJ mice.

View Article and Find Full Text PDF

Nanomedicine holds immense potential for therapeutic manipulation of phagocytic immune cells. However, in vitro studies often fail to accurately translate to the complex in vivo environment. To address this gap, we employed an ex vivo human whole-blood assay to evaluate liposome interactions with immune cells.

View Article and Find Full Text PDF

Intravital microscopy (IVM) expands our understanding of cellular and molecular processes, with applications ranging from fundamental biology to (patho)physiology and immunology, as well as from drug delivery to drug processing and drug efficacy testing. In this review, we highlight modalities, methods and model organisms that make up today's IVM landscape, and we present how IVM - via its high spatiotemporal resolution - enables analysis of metabolites, small molecules, nanoparticles, immune cells, and the (tumor) tissue microenvironment. We furthermore present examples of how IVM facilitates the elucidation of nanomedicine kinetics and targeting mechanisms, as well as of biological processes such as immune cell death, host-pathogen interactions, metabolic states, and disease progression.

View Article and Find Full Text PDF

Trained immunity, a functional state of myeloid cells, has been proposed as a compelling immune-oncological target. Its efficient induction requires direct engagement of myeloid progenitors in the bone marrow. For this purpose, we developed a bone marrow-avid nanobiologic platform designed specifically to induce trained immunity.

View Article and Find Full Text PDF

Melatonin is a neurohormone with potenial therapeutic effects in many diseases including neonatal hypoxic-ischemic (HI) brain injury. Due to limited solubility in water there is currently no clinically available melatonin formulation for parenteral use. Clinical use of melatonin has thus relied on oral administration, which in many cases is hampered by low and variable bioavailability.

View Article and Find Full Text PDF

Although the first nanomedicine was clinically approved more than two decades ago, nanoparticles' (NP) behavior is complex and the immune system's role in their application remains elusive. At present, only passive-targeting nanoformulations have been clinically approved, while more complicated active-targeting strategies typically fail to advance from the early clinical phase stage. This absence of clinical translation is, among others, due to the very limited understanding for targeting mechanisms.

View Article and Find Full Text PDF

Ischaemic heart disease evokes a complex immune response. However, tools to track the systemic behaviour and dynamics of leukocytes non-invasively in vivo are lacking. Here, we present a multimodal hot-spot imaging approach using an innovative high-density lipoprotein-derived nanotracer with a perfluoro-crown ether payload (F-HDL) to allow myeloid cell tracking by F magnetic resonance imaging.

View Article and Find Full Text PDF

Tumor associated macrophages are an essential part of the tumor microenvironment. Consequently, bone marrow-derived monocytes (BMDMs) are continuously recruited to tumors and are therefore seen as ideal delivery vehicles with tumor-targeting properties. By using immune cell depleting agents and macroscopic in vivo fluorescence imaging, we demonstrated that removal of endogenous monocytes and macrophages (but not neutrophils) leads to an increased tumor accumulation of exogenously administered BMDMs.

View Article and Find Full Text PDF

Purpose: The endeavor of deciphering intricate phenomena within the field of molecular medicine dictates the necessity to investigate tumor/disease microenvironment real-time on cellular level. We, hereby, design simple and robust intravital microscopy strategies, which can be used to elucidate cellular or molecular interactions in a fluorescent mouse model.

Procedures: We crossbred transgenic TIE2GFP mice with nude BALB/c mice, allowing the breeding of immunocompetent and immunodeficient mouse models expressing green fluorescent protein (GFP) in vascular endothelium.

View Article and Find Full Text PDF

Ligand-decorated nanoparticles are extensively studied and applied for in vivo drug delivery and molecular imaging. Generally, two different ligand-decoration procedures are utilized; ligands are either conjugated with nanoparticle ingredients and incorporated during nanoparticle preparation, or they are attached to preformed nanoparticles by utilizing functionalized reactive surface groups (e.g.

View Article and Find Full Text PDF

Biomedical engineering and its associated disciplines play a pivotal role in improving our understanding and management of disease. Motivated by past accomplishments, such as the clinical implementation of coronary stents, pacemakers or recent developments in antibody therapies, disease management now enters a new era in which precision imaging and nanotechnology-enabled therapeutics are maturing to clinical translation. Preclinical molecular imaging increasingly focuses on specific components of the immune system that drive disease progression and complications, allowing the study of potential therapeutic targets.

View Article and Find Full Text PDF

Understanding the formation process of nanoparticles is of the utmost importance to improve their design and production. This especially holds true for self-assembled nanoparticles whose formation processes have been largely overlooked. Herein, we present a new technology that integrates a microfluidic-based nanoparticle synthesis method and Förster resonance energy transfer (FRET) microscopy imaging to visualize nanoparticle self-assembly in real time.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers synthesized various sizes of gadolinium oxide nanodisks and gadolinium-doped iron oxide nanoparticles in spherical and cubic shapes using thermal decomposition of an oleate precursor.
  • The study highlights the potential of these nanoparticles as magnetic resonance (MR) contrast agents.
  • The findings suggest that these synthesized nanoparticles could enhance imaging in medical applications.
View Article and Find Full Text PDF

In vitro and in vivo behavior of nanoparticles (NPs) is often studied by tracing the NPs with fluorescent dyes. This requires stable incorporation of dyes within the NPs, as dye leakage may give a wrong interpretation of NP biodistribution, cellular uptake, and intracellular distribution. Furthermore, NP labeling with trace amounts of dye should not alter NP properties such as interactions with cells or tissues.

View Article and Find Full Text PDF

A major goal of cancer nanotherapy is to use nanoparticles as carriers for targeted delivery of anti-tumour agents. The drug-carrier association after intravenous administration is essential for efficient drug delivery to the tumour. However, a large number of currently available nanocarriers are self-assembled nanoparticles whose drug-loading stability is critically affected by the in vivo environment.

View Article and Find Full Text PDF

Manganese oxide nanoparticles (MONPs) are capable of time-dependent magnetic resonance imaging contrast switching as well as releasing a surface-bound drug. MONPs give T2/T2* contrast, but dissolve and release T1-active Mn(2+) and L-3,4-dihydroxyphenylalanine. Complementary images are acquired with a single contrast agent, and applications toward Parkinson's disease are suggested.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) constitutes a significant obstacle for the delivery of drugs into the central nervous system (CNS). Nanoparticles have been able to partly overcome this obstacle and can thus improve drug delivery across the BBB. Furthermore, focused ultrasound in combination with gas filled microbubbles has opened the BBB in a temporospatial manner in animal models, thus facilitating drug delivery across the BBB.

View Article and Find Full Text PDF

Microbubbles (MBs) are routinely used as contrast agents for ultrasound imaging. The use of ultrasound in combination with MBs has also attracted attention as a method to enhance drug delivery. We have developed a technology platform incorporating multiple functionalities, including imaging and therapy in a single system consisting of MBs stabilized by polyethylene glycol (PEG)-coated polymeric nanoparticles (NPs).

View Article and Find Full Text PDF

Purpose: Lipid-based nanoparticles are extensively studied for drug delivery. These nanoparticles are often surface-coated with polyethylene glycol (PEG) to improve their biodistribution. Until now, the effects of varying PEG surface density have been studied in a narrow and low range.

View Article and Find Full Text PDF

Purpose: To compare experimental transverse relaxivities of iron oxide nanocrystals (IONC) as a function of clustering and magnetic field strength with different theoretical model predictions.

Theory And Methods: Well-defined IONC clusters in nanoemulsions (NEs) of which both size and IONC loading could be judiciously tuned were developed. Transverse relaxivities were measured as a function of NE size and IONC loading at 20 and 300 MHz and compared with four theoretical model predictions.

View Article and Find Full Text PDF