To cause disease, cholera toxin (CT) is transported from the cell surface to the endoplasmic reticulum (ER) lumen where the catalytic CTA1 subunit retro-translocates to the cytosol to induce pathological water secretion. Two retro-translocon components are the Derlins and ER-associated multi-spanning E3 ubiquitin ligases including Hrd1 and gp78. We demonstrated previously that Derlin-1 facilitates CTA1 retro-translocation.
View Article and Find Full Text PDFThe human cytomegalovirus-encoded glycoproteins US2 and US11 target newly synthesized major histocompatibility complex class I heavy chains for degradation by mediating their dislocation from the endoplasmic reticulum back into the cytosol, where they are degraded by proteasomes. A functional ubiquitin system is required for US2- and US11-dependent dislocation of the class I heavy chains. It has been assumed that the class I heavy chain itself is ubiquitinated during the dislocation reaction.
View Article and Find Full Text PDFTo eliminate misfolded proteins that accumulate in the endoplasmic reticulum (ER) the cell mainly relies on ubiquitin-proteasome dependent ER-associated protein degradation (ERAD). Proteolysis of ERAD substrates by the proteasome requires their ubiquitylation and retro-translocation from the ER to the cytoplasm. Here we describe a high molecular mass protein complex associated with the ER membrane, which facilitates ERAD.
View Article and Find Full Text PDFMisfolded proteins are eliminated from the endoplasmic reticulum (ER) by retrotranslocation into the cytosol, a pathway hijacked by certain viruses to destroy MHC class I heavy chains. The translocation of polypeptides across the ER membrane requires their polyubiquitination and subsequent extraction from the membrane by the p97 ATPase [also called valosin-containing protein (VCP) or, in yeast, Cdc48]. In higher eukaryotes, p97 is bound to the ER membrane by a membrane protein complex containing Derlin-1 and VCP-interacting membrane protein (VIMP).
View Article and Find Full Text PDFSurface MHC class I molecules serve important immune functions as ligands for both T and NK cell receptors for the elimination of infected and malignant cells. In order to reach the cell surface, MHC class I molecules have to fold properly and form trimers consisting of a heavy chain (HC), a beta2-microglobulin light chain and an 8-10-mer peptide. A panel of ER chaperones facilitates the folding and assembly process.
View Article and Find Full Text PDFTo determine to what extent lipopolysaccharide-induced IL-10 production capacity is determined by polymorphisms in toll-like receptor-4 (TLR4) and the IL-10 promoter region, we measured in vivo IL-10 and TNF-alpha production in patients undergoing elective cardiopulmonary bypass surgery, a major surgical trauma associated with ischemia-reperfusion injury that triggers an endotoxemia and profound inflammatory response in most patients. Ex vivo the IL-10 and TNF-alpha production was measured in a whole blood stimulation assay, using 3 LPS concentrations. Positive correlations were found between TNF-alpha and IL-10 production ex vivo, upon stimulation with each of the LPS concentrations.
View Article and Find Full Text PDFIn the present study, the human TEB4 is identified as a novel ER (endoplasmic reticulum)-resident ubiquitin ligase. TEB4 has homologues in many species and has a number of remarkable properties. TEB4 contains a conserved RING (really interesting new gene) finger and 13 predicted transmembrane domains.
View Article and Find Full Text PDFHumans exhibit substantial inter-individual differences in TNF-alpha production upon endotoxin stimulation. To determine to what extent the lipopolysaccharide-induced TNF-alpha production capacity in vivo and ex vivo is determined by polymorphisms in toll-like receptor-4 (TLR4), the TNF-alpha promoter region and Nod2, we screened for two TLR4 polymorphisms, a Nod2 polymorphism and the TNF-alpha promoter polymorphisms. We measured the perioperative endotoxemia and TNF-alpha production and the TNF-alpha production capacity of each patient in a whole-blood stimulation assay using blood drawn before anesthesia, using various LPS concentrations, in patients undergoing elective cardiac surgery.
View Article and Find Full Text PDFThe ubiquitin system plays an important role in endoplasmic reticulum (ER)-associated degradation of proteins that are misfolded, that fail to associate with their oligomerization partners, or whose levels are metabolically regulated. E3 ubiquitin ligases are key enzymes in the ubiquitination process as they recognize the substrate and facilitate coupling of multiple ubiquitin units to the protein that is to be degraded. The Saccharomyces cerevisiae ER-resident E3 ligase Hrd1p/Der3p functions in the metabolically regulated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and additionally facilitates the degradation of a number of misfolded proteins from the ER.
View Article and Find Full Text PDFCell mediated immunity plays a critical role in human host defence against intracellular bacteria. In patients with unusual, severe infections caused by poorly pathogenic species of mycobacteria and salmonellae, genetic deficiencies have been identified in key genes in the type-1 cytokine pathway, especially in IFNGR1 and IL12RB1. Here, we analyzed 11 patients originating from Turkey and suffering from unusual Mycobacterium bovis Bacille Calmette-Guerin infections following vaccination, and found that most patients (n=8) are deficient in IL-12Rbeta1 expression and function.
View Article and Find Full Text PDF