Berberine, an active compound in the extract of golden seal (an age-long remedy for many infections) has been confirmed to be responsible for the extract's activity against multi-drug resistant strain of Mycobacterium tuberculosis. There is no available study that shows the exact target of berberine in M tuberculosis, although it is confirmed that berberine inhibits the polymerisation of filamentous temperature-sensitive mutant Z (FtsZ), an important bacteria cytokinesis protein, in Escherichia coli, suggesting that FtsZ could as well be the target of berberine in M tuberculosis. In this study, we carried out ligand-based virtual screening to identify analogues of berberine followed by molecular dynamics (MD) simulations of the complexes of Mtb-FtsZ with berberine (berb1) and the five selected analogues (berb9 [ZINC1709414], berb37 [ZINC238749993], berb38 [ZINC13509022], berb43 [ZINC14765594], and berb48 [ZINC238758595]).
View Article and Find Full Text PDFMicrobial lipids, also known as single-cell oils (SCOs), are highly attractive feedstocks for biodiesel production due to their fast production rates, minimal labor requirements, independence from seasonal and climatic changes, and ease of scale-up for industrial processing. Among the SCO producers, the less explored filamentous fungi (molds) exhibit desirable features such as a repertoire of hydrolyzing enzymes and a unique pellet morphology that facilitates downstream harvesting. Although several oleaginous filamentous fungi have been identified and explored for SCO production, high production costs and technical difficulties still make the process less attractive compared to conventional lipid sources for biodiesel production.
View Article and Find Full Text PDFBackground: The importance of the accessory enzymes such as α-L-arabinofuranosidases (AFases) in synergistic interactions within cellulolytic mixtures has introduced a paradigm shift in the search for hydrolytic enzymes. The aim of this study was to characterize novel AFase genes encoding enzymes with differing temperature optima and thermostabilities for use in hydrolytic cocktails.
Results: Three fosmids, pFos-H4, E3 and D3 were selected from the cloned metagenome of high temperature compost, expressed in Escherichia coli and subsequently purified to homogeneity from cell lysate.
In this study, we monitored the inhibition and deactivation effects of various compounds associated with lignocellulosic hydrolysates on individual and combinations of cellulases. Tannic acid representing polymeric lignin residues strongly inhibited cellobiohydrolase 1 (CBH1) and β-glucosidase 1 (BGL1), but had a moderate inhibitory effect on endoglucanase 2 (EG2). Individual monomeric lignin residues had little or no inhibitory effect on hydrolytic enzymes.
View Article and Find Full Text PDF