J Opt Soc Am A Opt Image Sci Vis
February 2022
As one of the most sensitive quantitative phase microscopy techniques, spatial light interference microscopy (SLIM) has undergone rapid development in the past decade and has seen wide application in both basic science and clinical studies. However, as with any other traditional microscope, the axial resolution is the worst among the three dimensions. This leads to lower contrast in the thicker regions of cell samples.
View Article and Find Full Text PDFDark-field microscopy is known to offer both high resolution and direct visualization of thin samples. However, its performance and optimization on thick samples is under-explored and so far, only meso-scale information from whole organisms has been demonstrated. In this work, we carefully investigate the difference between trans- and epi-illumination configurations.
View Article and Find Full Text PDFMitochondria are delicate organelles that play a key role in cell fate. Current research methods rely on fluorescence labeling that introduces stress due to photobleaching and phototoxicity. Here we propose a new, gentle method to study mitochondrial dynamics, where organelle-specific three-dimensional information is obtained in a label-free manner at high resolution, high specificity, and without detrimental effects associated with staining.
View Article and Find Full Text PDFBiomedical optical imaging is playing an important role in diagnosis and treatment of various diseases. However, the accuracy and the reproducibility of an optical imaging device are greatly affected by the performance characteristics of its components, the test environment, and the operations. Therefore, it is necessary to calibrate these devices by traceable phantom standards.
View Article and Find Full Text PDFRecent developments in phase contrast microscopy have enabled the label-free visualization of certain organelles due to their distinct morphological features, making this method an attractive alternative in the study of cellular dynamics. However tubular structures such as endoplasmic reticulum (ER) networks and complex dynamics such as the fusion and fission of mitochondria, due to their low phase contrast, still need fluorescent labeling to be adequately imaged. In this article, we report a quantitative phase microscope with ultra-oblique illumination that enables us to see those structures and their dynamics with high contrast for the first time without labeling.
View Article and Find Full Text PDF