Publications by authors named "Siyu Gou"

Stimuli-responsive upconversion nanoparticle (UCNP)-poly--isopropylacrylamide (pNIPAM)/DNA core-shell microgels with tunable sizes and programmable functions have been prepared. Thanks to the near-infrared (NIR)-responsive UCNP cores and thermosensitive polymeric shells, functional DNA-incorporated microgels with high DNA activity and loading efficiency are obtained, and the activity of the loaded DNA structures can be smartly regulated by NIR illumination and temperature simultaneously.

View Article and Find Full Text PDF

Point-of-care testing (POCT) platforms for microRNA (miRNA) detection have attracted considerable attention in recent years, due to the increasingly important role of miRNA as biomarkers for the diagnosis of many diseases, such as cancers. However, several limitations such as the requirement of enzyme-related amplification system, expensive preservation cost, sophisticated analysis instruments and tedious operations of conventional miRNA biosensing devices severely hinder their widespread applications. In this work, a portable and smart colorimetric analysis platform was developed by employing the ultrathin DNA-gold nanoparticle (AuNP) hybrid hydrogel film as the signaling unit and the enzyme-free entropy-driven dynamic DNA network (EDN) as the signal converter and amplification unit.

View Article and Find Full Text PDF

A portable, cost-effective and storable DNA-gold nanoparticle (AuNP) hybrid hydrogel film based biosensing system was developed, with AuNPs serving as both the crosslinking units of the film and the signaling units. Using a layer-by-layer assembly method, hydrogel film composed of three-dimensional hydrophilic network of densely packed AuNPs interconnected by responsive DNA structures was constructed onto a glass slide. By programming the sequence of DNA structures, target-responsive hybrid films were constructed.

View Article and Find Full Text PDF

species, and , are harmful raphidophycean flagellates known to have hemolytic effects on many marine organisms and resulting in massive ecological damage worldwide. However, knowledge of the toxigenic mechanism of these ichthyotoxic flagellates is still limited. Light was reported to be responsible for the hemolytic activity (HA) of species.

View Article and Find Full Text PDF

In view of the problem of the paralytic shellfish poison producing algae on-line measurement and identification, a new feature extraction method of paralytic shellfish poison producing algae measurement and identification based on quaternion principal component analysis (QPCA) is investigated. The three-dimensional (3D) fluorescence spectra of three common species of paralytic shellfish poison producing algae and eight species common of non paralytic shellfish poison producing algae are analyzed. The quaternion parallel representation model of algae three-dimensional fluorescence spectrum data is established, then the features of quaternion principal component is extracted to use as the input of k-nearest neighbor (KNN) classifier, and the identification of paralytic shellfish poison producing algae is realized by the three-dimensional fluorescence spectra coupled with quaternion principal component analysis.

View Article and Find Full Text PDF

Visually observable pH-responsive luminescent materials are developed by integrating the properties of aggregation-induced emission enhancement of Cu nanoclusters (NCs) and the Ca-triggered gelatin of alginate. Sodium alginate, CaCO nanoparticles, and Cu NCs are dispersed in aqueous solution, which is in a transparent fluid state, showing weak photoluminescence (PL). The introduced H can react with the CaCO nanoparticles to produce free Ca, which can cross-link the alginate chains into gel networks.

View Article and Find Full Text PDF

Smart window is a promising green technology with feature of tunable transparency under external stimuli to manage light transmission and solar energy. However, more functions based on the intelligent management of the solar spectrum need to be integrated into present smart windows. In this work, a dual-function smart window is fabricated by pairing the luminescent switch with the electrochromic window.

View Article and Find Full Text PDF