Purpose: This study presents a novel and comprehensive framework for evaluating magnetic resonance guided radiotherapy (MRgRT) workflow by integrating the Failure Modes and Effects Analysis (FMEA) approach with Time-Driven Activity-Based Costing (TDABC). We assess the workflow for safety, quality, and economic implications, providing a holistic understanding of the MRgRT implementation. The aim is to offer valuable insights to healthcare practitioners and administrators, facilitating informed decision-making regarding the 0.
View Article and Find Full Text PDFPurpose: Standardization of x-ray cabinet irradiator dose, geometry, and calibration reporting is an ongoing process. Multi-tube designs have been introduced into the preclinical market and give a theoretical benefit but have not been widely assessed for use in preclinical irradiation conditions. The aim of this study was to report our experience commissioning a dual x-ray source cabinet irradiator (CIXD, Xstrahl Limited, United Kingdom) and assess the dose distribution for various experimental conditions.
View Article and Find Full Text PDFBackground: It is not unusual to see some parts of tissues are excluded in the field of view of CT simulation images. A typical mitigation is to avoid beams entering the missing body parts at the cost of sub-optimal planning.
Methods: This study is to solve the problem by developing 3 methods, (1) deep learning (DL) mechanism for missing tissue generation, (2) using patient body outline (PBO) based on surface imaging, and (3) hybrid method combining DL and PBO.
Purpose: It is challenging to achieve appropriate target coverage of the prostate with Image Guided Radiation Therapy (IGRT) while simultaneously constraining rectal doses within planned values when there is significant variability in rectal filling and shape. We investigated if rectum planning goals can be fulfilled using rigid CBCT-based on-board alignment to account for interfraction rectal deformations.
Methods: Delivered rectal doses corresponding to prostate alignment ("PR") and anterior rectum alignment ("AR") for 239 daily treatments from 13 patients are reported.
Objectives: As an alternative to conventional compression amidst the COVID-19 pandemic, we developed a contactless motion management strategy. By increasing the patient's breathing rate to induce shallow breathing with the aid of a metronome, our hypothesis is that the motion magnitude of the target may be minimized without physical contact or compression.
Methods: Fourteen lung stereotactic body radiation therapy (SBRT) patients treated under fast shallow-breathing (FSB) were selected for inclusion in this retrospective study.
Oral cancer is one of the most prevalent malignant tumors worldwide. Silibinin has been reported to exert therapeutic effects in various cancer models. However, its mechanism of action in oral cancer remains unclear.
View Article and Find Full Text PDFJ Appl Clin Med Phys
November 2022
Purpose: The 4D computed tomography (CT) simulation is an essential procedure for tumors exhibiting breathing-induced motion. However, to date there are no established guidelines to assess the characteristics of existing systems and to describe meaningful performance. We propose a commissioning quality assurance (QA) protocol consisting of measurements and acquisitions that assess the mechanical and computational operation for 4D CT with both phase and amplitude-based reconstructions, for regular and irregular respiratory patterns.
View Article and Find Full Text PDFThermoplastic masks keep patients in an appropriate position to ensure accurate radiation delivery. For a thermoplastic mask to maintain clinical efficacy, the mask should wrap the patient's surface properly and provide uniform pressure to all areas. However, to our best knowledge, no explicit method for achieving such a goal currently exists.
View Article and Find Full Text PDFBackground: Colorectal cancer (CRC) has a high morbidity and mortality worldwide. 20 (S)-ginsenoside Rh2 (G-Rh2) is a natural compound extracted from , which exhibits anticancer effects in many cancer types. In this study, we demonstrated the effect and underlying molecular mechanism of G-Rh2 in CRC cells in vitro and in vivo.
View Article and Find Full Text PDFThe effect of glucose-dependent insulinotropic polypeptide (GIP) on cells under oxidative stress induced by glutamate, a neurotransmitter, and the underlying molecular mechanisms were assessed in the present study. We found that in the pre-treatment of HT-22 cells with glutamate in a dose-dependent manner, intracellular ROS were excessively generated, and additional cell damage occurred in the form of lipid peroxidation. The neurotoxicity caused by excessive glutamate was found to be ferroptosis and not apoptosis.
View Article and Find Full Text PDFBackground/aim: [6]-Gingerol, a compound extracted from ginger, has been studied for its therapeutic potential in various types of cancers. However, its effects on oral cancer remain largely unknown. Here, we aimed to investigate the potential anticancer activity and underlying mechanisms of [6]-gingerol in oral cancer cells.
View Article and Find Full Text PDFBackground: Juxtaposed with another zinc finger protein 1 (JAZF1) is associated with metabolic disorders, including type 2 diabetes mellitus (T2DM). Several studies showed that JAZF1 and body fat mass are closely related. We attempted to elucidate the JAZF1 functions on adipose development and related metabolism using in vitro and in vivo models.
View Article and Find Full Text PDFSystemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects multiple organs. Recent studies suggest relevance between cysteine protease cathepsin S (CTSS) expression and SLE. To investigate the mechanism of CTSS in SLE, CTSS-overexpressing transgenic (TG) mice were generated, and induced lupus-like symptoms.
View Article and Find Full Text PDFIEEE J Transl Eng Health Med
December 2021
Objective: To introduce an MRI in-plane resolution enhancement method that estimates High-Resolution (HR) MRIs from Low-Resolution (LR) MRIs.
Method & Materials: Previous CNN-based MRI super-resolution methods cause loss of input image information due to the pooling layer. An Autoencoder-inspired Convolutional Network-based Super-resolution (ACNS) method was developed with the deconvolution layer that extrapolates the missing spatial information by the convolutional neural network-based nonlinear mapping between LR and HR features of MRI.
Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world. Rhein has demonstrated therapeutic effects in various cancer models. However, its effects and underlying mechanisms of action in CRC remain poorly understood.
View Article and Find Full Text PDFSerum amyloid A (SAA) is an acute-phase protein produced primarily in the liver that plays a key role in both the initiation and maintenance of inflammation. Rapidly secreted SAA induces neutrophilia at inflammatory sites, initiating inflammation and inducing the secretion of various cytokines, including TNF-α, IL-6, and IL-17. IL-17 is expressed in several inflammatory cells, including innate immune cells such as γδT cells, ILC3 cells, and neutrophils.
View Article and Find Full Text PDFGenetic susceptibility of type 2 diabetes and Juxtaposed with another zinc finger protein 1 (Jazf1) has been reported; however, the precise role of Jazf1 in metabolic processes remains elusive. In this study, using Jazf1-knockout (KO)-induced pluripotent stem cells (iPSC), pancreatic beta cell line MIN6 cells, and Jazf-1 heterozygous KO (Jazf1 ) mice, the effect of Jazf1 on gradual differentiation was investigated. We checked the alterations of the genes related with β-cell specification, maturation, and insulin release against glucose treatment by the gain and loss of the Jazf1 gene in the MIN6 cells.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
October 2020
This study aimed to establish an efficient planning technique for low dose whole lung treatment that can be implemented rapidly and safely. The treatment technique developed here relied only on chest radiograph and a simple empirical monitor unit calculation formula. The 3D dose calculation in real patient anatomy, including both nonCOVID and COVID-19 patients, which took into account tissue heterogeneity showed that the dose delivered to lungs had reasonable uniformity even with this simple and quick setup.
View Article and Find Full Text PDFBackground: The root bark of Dictamnus dasycarpus Turcz. has been successfully used for the treatment of inflammatory skin conditions such as eczema and pruritus. However, the anti-psoriatic effect of this plant has not until now been investigated.
View Article and Find Full Text PDFThe spine flexibility creates one of the most significant challenges to proper positioning in radiation therapy of head and neck cancers. Even though existing immobilization techniques can reduce the positioning uncertainty, residual errors (2-3 mm along the cervical spine) cannot be mitigated by single translation-based approaches. Here, we introduce a fully radiotherapy-compatible electro-mechanical robotic system, capable of positioning a patient's head with submillimeter accuracy in clinically acceptable spatial constraints.
View Article and Find Full Text PDFAustralas Phys Eng Sci Med
September 2019
This study aims to model an extra-focal source for the scattered radiation from multi-leaf collimators (MLCs), namely an MLC scatter source, and to correct in-air output ratio (S) calculated using the conventional dual source model (DSM) to achieve better accuracy of point dose calculation. To develop the MLC scatter source, a 6 MV photon beam from a Varian Clinac® iX linear accelerator with millennium 120 MLCs was used. It was assumed that the position for the MLC scatter source was located at the center of the MLC, consisting of line-based and area-based sources to consider the characteristics of the scattered radiation from the MLCs empirically.
View Article and Find Full Text PDFJ Med Imaging Radiat Oncol
June 2019
Introduction: 4D-MRI, compared to 4D-CT, provides better soft-tissue contrast for target delineation. However, motion artefacts are often observed due to residual breathing variations. This study is to present a retrospective 4D-MRI reconstruction method based on 2D diaphragm profiles to improve the quality of 4D-MR images in the presence of significant breathing variations.
View Article and Find Full Text PDF