Publications by authors named "Siyka I Shopova"

Optofluidic dye lasers hold great promise for adaptive photonic devices, compact and wavelength-tunable light sources, and micro total analysis systems. To date, however, nearly all those lasers are directly excited by tuning the pump laser into the gain medium absorption band. Here we demonstrate bioinspired optofluidic dye lasers excited by FRET, in which the donor-acceptor distance, ratio, and spatial configuration can be precisely controlled by DNA scaffolds.

View Article and Find Full Text PDF

This article reviews the recent progress in optical biosensors that use the label-free detection protocol, in which biomolecules are unlabeled or unmodified, and are detected in their natural forms. In particular, it will focus on the optical biosensors that utilize the refractive index change as the sensing transduction signal. Various optical label-free biosensing platforms will be introduced, including, but not limited to, surface plasmon resonance, interferometers, waveguides, fiber gratings, ring resonators, and photonic crystals.

View Article and Find Full Text PDF

We develop rapid chemical-vapor sensors based on optofluidic ring resonators (OFRRs). The OFRR is a glass capillary whose circular wall supports the circulating waveguide modes (WGMs). The OFRR inner surface is coated with a vapor-sensitive polymer.

View Article and Find Full Text PDF

We developed a novel on-column micro gas chromatography (microGC) detector using capillary based optical ring resonators (CBORRs). The CBORR is a thin-walled fused silica capillary with an inner diameter ranging from a few tens to a few hundreds of micrometers. The interior surface of the CBORR is coated with a layer of stationary phase for gas separation.

View Article and Find Full Text PDF

We develop a versatile integrated opto-fluidic ring resonator (OFRR) dye laser that can be operated regardless of the refractive index (RI) of the liquid. The OFRR is a micro-sized glass capillary with a wall thickness of a few micrometers. When the liquid in the core has an RI lower than that of the capillary wall (n=1.

View Article and Find Full Text PDF

We demonstrate an opto-fluidic ring resonator dye laser using highly efficient energy transfer. The active lasing material consists of a donor and acceptor mixture and flows in a fused silica capillary whose circular cross section forms a ring resonator and supports the whispering gallery modes (WGMs) of high Q-factors (>107). The excited states are created in the donor and transferred to the acceptor through the fluorescence resonant energy transfer (FRET), whose emission is coupled into the WGM.

View Article and Find Full Text PDF