Virtually all living cells are covered with glycans. Their structures are primarily controlled by the specificities of glycosyltransferases (GTs). GTs typically adopt one of the three folds, namely, GT-A, GT-B, and GT-C.
View Article and Find Full Text PDFThe microbial cycling of dimethylsulfoniopropionate (DMSP) and the resulting gaseous catabolites dimethylsulfide (DMS) or methylmercaptan (MeSH) play key roles in the global sulfur cycle and potentially climate regulation. As the ocean-atmosphere boundary, the sea surface microlayer (SML) is important for the generation and emission of DMS and MeSH. However, understanding of the microbial DMSP metabolism remains limited in the SML.
View Article and Find Full Text PDFThe osmolyte dimethylsulfoniopropionate (DMSP) is produced in petagram amounts by marine microorganisms. Estuaries provide natural gradients in salinity and nutrients, factors known to regulate DMSP production; yet there have been no molecular studies of DMSP production and cycling across these gradients. Here, we study the abundance, distribution and transcription of key DMSP synthesis (e.
View Article and Find Full Text PDFMicrobial production and catabolism of dimethylsulfoniopropionate (DMSP), generating the climatically active gases dimethyl sulfide (DMS) and methanethiol (MeSH), have key roles in global carbon and sulfur cycling, chemotaxis, and atmospheric chemistry. Microorganisms in the sea surface microlayer (SML), the interface between seawater and atmosphere, likely play an important role in the generation of DMS and MeSH and their exchange to the atmosphere, but little is known about these SML microorganisms. Here, we investigated the differences between bacterial community structure and the distribution and transcription profiles of the key bacterial DMSP synthesis (dsyB and mmtN) and catabolic (dmdA and dddP) genes in East China Sea SML and subsurface seawater (SSW) samples.
View Article and Find Full Text PDF