Background: Circular RNAs (circRNAs) are highly enriched in the central nervous system and have been implicated in neurodegenerative diseases. However, whether and how circRNAs contribute to the pathological processes induced by traumatic brain injury (TBI) has not been fully elucidated.
Methods: We conducted a high-throughput RNA sequencing screen for well-conserved, differentially expressed circRNAs in the cortex of rats subjected to experimental TBI.
Objective: The aim of this study was to investigate the clinical curative effect of hyperbaric oxygen (HBO) treatment and its mechanism in improving dysfunction following traumatic brain injury (TBI).
Methods: Patients were enrolled into control and HBO groups. Glasgow coma scale (GCS) and coma recovery scale-revised (CRS-R) scores were used to measure consciousness; the Rancho Los Amigos scale-revised (RLAS-R) score was used to assess cognitive impairment; the Stockholm computed tomography (CT) score, quantitative electroencephalography (QEEG), and biomarkers, including neuron-specific enolase (NSE), S100 calcium-binding protein beta (S100β), glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and vascular endothelial growth factor (VEGF), were used to assess TBI severity.
Neuroinflammation contributes to delayed (secondary) neurodegeneration following traumatic brain injury (TBI). Tumor necrosis factor receptor-associated factor 6 (TRAF6) signaling may promote post-TBI neuroinflammation, thereby exacerbating secondary injury. This study investigated the pathogenic functions of TRAF6 signaling following TBI and .
View Article and Find Full Text PDFMotivation: The classification of high-throughput protein data based on mass spectrometry (MS) is of great practical significance in medical diagnosis. Generally, MS data are characterized by high dimension, which inevitably leads to prohibitive cost of computation. To solve this problem, one-bit compressed sensing (CS), which is an extreme case of quantized CS, has been employed on MS data to select important features with low dimension.
View Article and Find Full Text PDFWorld J Gastroenterol
December 2015
Aim: To investigate small interfering RNA (siRNA)-mediated inhibition of nuclear factor-kappa B (NF-κB) activation and multidrug-resistant (MDR) phenotype formation in human HepG2 cells.
Methods: Total RNA was extracted from human HepG2 or LO2 cells. NF-κB/p65 mRNA was amplified by nested reverse transcription polymerase chain reaction and confirmed by sequencing.
Zhonghua Gan Zang Bing Za Zhi
August 2014
Objective: To investigate the effects of Annexin A2 (ANXA2) deficiency on the malignant biological behaviour of hepatoma cells.
Methods: The human hepatocellular carcinoma (HCC) cells lines MHCC97-H, HepG2, SMMC-7721, SMMC-7402 and L02 were evaluated. The expression and distribution of ANXA2 were analysed by western blotting, real-time PCR, immunofluorescence and immunohistochemistry.
Zhonghua Gan Zang Bing Za Zhi
June 2014
Objective: To investigate the inhibitory effects of intervention of the tumor necrosis factor-alpha (TNFa)/nuclear factor-kappa B (NF-kappaB) signaling pathway activation on hepatoma cell proliferation and to explore its mechanism.
Methods: A rodent hepatoma model was established by feeding N-2-fluorenylacetamide (2-N-FAA) to male Sprague-Dawley rats. Human subjects with various liver diseases were enrolled in the study, and serum and peripheral blood nuclear cells were collected for analysis.
ScientificWorldJournal
February 2014
Clustering has become a common trend in very long instruction words (VLIW) architecture to solve the problem of area, energy consumption, and design complexity. Register-file-connected clustered (RFCC) VLIW architecture uses the mechanism of global register file to accomplish the inter-cluster data communications, thus eliminating the performance and energy consumption penalty caused by explicit inter-cluster data move operations in traditional bus-connected clustered (BCC) VLIW architecture. However, the limit number of access ports to the global register file has become an issue which must be well addressed; otherwise the performance and energy consumption would be harmed.
View Article and Find Full Text PDFInfluenza A virus (IAV) is one of the most common infectious pathogens in humans. Since the IVA genome does not have the processing protease for the viral hemagglutinin (HA) envelope glycoprotein precursors, entry of this virus into cells and infectious organ tropism of IAV are primarily determined by host cellular trypsin-type HA processing proteases. Several secretion-type HA processing proteases for seasonal IAV in the airway, and ubiquitously expressed furin and pro-protein convertases for highly pathogenic avian influenza (HPAI) virus, have been reported.
View Article and Find Full Text PDFAims: Influenza A virus (IAV) infection markedly up-regulates ectopic trypsins in various organs, viral envelope glycoprotein processing proteases, which are pre-requisites for virus entry and multiplication. We investigated the pathological roles of trypsin up-regulation in the progression of IAV-induced myocarditis, cytokine induction, and viral replication in the hearts, and also investigated the protective effects of trypsin inhibitor on cardiac dysfunction in vivo and selective knockdown of trypsin on IAV-induced cellular damage in cardiomyoblasts.
Methods And Results: The relationship of the expression among IAV RNA, trypsins, matrix metalloproteinase (MMP)-9, MMP-2, pro-inflammatory cytokines interleukin (IL)-6, IL-1β, and tumour necrosis factor-α was analysed in mice hearts and cardiomyoblasts after IAV infection.
Background: Severe influenza is characterized by cytokine storm and multiorgan failure with edema. The aim of this study was to define the impact of the cytokine storm on the pathogenesis of vascular hyperpermeability in severe influenza.
Methods: Weanling mice were infected with influenza A WSN/33(H1N1) virus.
Severe influenza is characterized by cytokine storm and multi-organ failure with edema. We found that the "influenza virus-cytokine-trypsin/MMP-9 cycle" in the endothelial cells is one of the key mechanisms of vascular hyperpermeability, the major pathogen of multi-organ failure. Upregulated TNF-alpha, IL-6 and IL-beta induce ectopic pancreatic trypsin and pro-MMP-9 in the endothelial cells and in various organs.
View Article and Find Full Text PDFSevere influenza is characterized clinicopathologically by multiple organ failure, although the relationship amongst virus and host factors that influence this morbid outcome and the underlying mechanisms of action remain unclear. The present study identified marked upregulation of matrix metalloproteinase (MMP)-9 and pro-inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) in various organs after intranasal infection of influenza A WSN virus. MMP-9 and TNF-alpha were upregulated in the lung, the site of initial infection, as well as in the brain and heart.
View Article and Find Full Text PDFInfluenza A virus (IAV) is one of the most common infectious pathogens in humans and causes considerable morbidity and mortality. The recent spread of highly-pathogenic avian IAV H5N1 viruses has reinforced the importance of pandemic preparedness. In the pathogenesis of IAV infection, cellular proteases play critical roles in the process of viral entry into cells that subsequently leads to tissue damage in the infected organs.
View Article and Find Full Text PDF