Publications by authors named "Siyang Wen"

Background: Hepatitis B virus (HBV) infection is a major concern regarding blood safety in countries with a high HBV prevalence, such as China. We aimed to understand the prevalence of HBV infection among blood donors in Chongqing and provide an important basis for developing appropriate blood screening strategies.

Methods: Dual enzyme-linked immunosorbent assays (ELISAs) for hepatitis B surface antigen (HBsAg) were conducted in parallel with nucleic acid testing (NAT) of donors.

View Article and Find Full Text PDF

Hypoxia is a key feature of tumor microenvironment that contributes to the development of breast cancer stem cells (BCSCs) with strong self-renewal properties. However, the specific mechanism underlying hypoxia in BCSC induction is not completely understood. Herein, we provide evidence that a novel hypoxia-specific circSTT3A is significantly upregulated in clinical breast cancer (BC) tissues, and is closely related to the clinical stage and poor prognosis of patients with BC.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) are the predominant stromal cells in the microenvironment and play important roles in tumor progression, including chemoresistance. However, the response of CAFs to chemotherapeutics and their effects on chemotherapeutic outcomes are largely unknown. In this study, we showed that epirubicin (EPI) treatment triggered ROS which initiated autophagy in CAFs, TCF12 inhibited autophagy flux and further promoted exosome secretion.

View Article and Find Full Text PDF

This study aimed to investigate the prevalence of and risk factors for multidrug-resistant organism (MDRO) infection in the rehabilitation ward of a general hospital in Southwest China. We analyzed rehabilitation patients with nosocomial infections caused by MDROs from June 2016 to June 2020. MDRO infection pathogens and associated antibiotic resistance were calculated.

View Article and Find Full Text PDF

Invasion and metastasis are the leading causes of death in patients with breast cancer (BC), and epithelial-mesenchymal transformation (EMT) plays an essential role in this process. Here, we found that Lnc-408, a novel long noncoding RNA (lncRNA), is significantly upregulated in BC cells undergoing EMT and in BC tumor with lymphatic metastases compared with those without lymphatic metastases. Lnc-408 can enhance BC invasion and metastasis by regulating the expression of LIMK1.

View Article and Find Full Text PDF

Tumor initiation, development, and relapse may be closely associated with cancer stem cells (CSCs). The complicated mechanisms underlying the maintenance of CSCs are keeping in illustration. Long noncoding RNAs (lncRNAs), due to their multifunction in various biological processes, have been indicated to play a crucial role in CSC renewal and stemness maintenance.

View Article and Find Full Text PDF

Metastasis is the leading cause of breast cancer-related deaths. Cancer-associated fibroblasts (CAFs), the predominant stromal cell type in the breast tumour microenvironment, may contribute to cancer progression through interaction with tumour cells. Nonetheless, little is known about the details of the underlying mechanism.

View Article and Find Full Text PDF

Tamoxifen resistance is a major clinical challenge in breast cancer treatment. Our previous studies find that GPER and its down-stream signaling play a pivotal role in the development of tamoxifen (TAM) resistance. cDNA array analysis indicated a set of genes associated with cell apoptosis are aberrant in GPER activated and TAM-resistant MCF-7R cells compared with TAM-sensitive MCF-7 cells.

View Article and Find Full Text PDF

Drosha is an RNA III-like enzyme that has an aberrant expression in some tumors. Our previous studies showed the aberrant Drosha in gastric tumors. However, the roles of nuclear Drosha, the main regulator of microRNA (miRNA) biogenesis, in gastric cancer (GC) progression remain poorly understood.

View Article and Find Full Text PDF

Objective To establish a gastric cancer cell line with stable Drosha silenced and explore the effect of Drosha on the chemosensitivity of gastric cancer cells to epirubicin. Methods Interfering sequences targeting Drosha were designed and inserted into the lentiviral vectors, which were used to transfect MGC-803 cells. The level of Drosha mRNA was detected by quantitative real-time PCR; Drosha protein was detected by Western blotting; MTT assay was performed to test the 50% inhibitory concentration (IC50) of epirubicin agaisnt wide-type MGC-803 cells.

View Article and Find Full Text PDF

Background: The nuclear localization of Drosha is critical for its function as a microRNA maturation regulator. Dephosphorylation of Drosha at serine 300 and serine 302 disrupts its nuclear localization, and aberrant distribution of Drosha has been detected in some tumors.

Aims: The purpose of the present study was to assess cytoplasmic/nuclear Drosha expression in gastric cancer carcinogenesis and progression.

View Article and Find Full Text PDF

Twist, a highly conserved basic Helix-Loop-Helix transcription factor, functions as a major regulator of epithelial-mesenchymal transition (EMT) and tumor metastasis. In different cell models, signaling pathways such as TGF-β, MAPK/ERK, WNT, AKT, JAK/STAT, Notch, and P53 have also been shown to play key roles in the EMT process, yet little is known about the signaling pathways regulated by Twist in tumor cells. Using iTRAQ-labeling combined with 2D LC-MS/MS analysis, we identified 194 proteins with significant changes of expression in MCF10A-Twist cells.

View Article and Find Full Text PDF

Objective: To investigate the role of Drosha expression in the progression of gastric adenocarcinoma and its impact on the invasive ability of SGC-7901 human gastric cancer cells.

Methods: Drosha expression was detected in 889 gastric carcinoma samples on tissue microarrays by immunohistochemistry staining and quantified by Image-Pro Plus software. Statistical analysis was used to evaluate the correlations between Drosha expression and the clinicopathological characteristics of the 889 tumor cases or the outcomes of 309 gastric adenocarcinoma patients.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are a subpopulation of neoplastic cells with self-renewal capacity and limitless proliferative potential as well as high invasion and migration capacity. These cells are commonly associated with epithelial-mesenchymal transition (EMT), which is also critical for tumor metastasis. Recent studies illustrate a direct link between EMT and stemness of cancer cells.

View Article and Find Full Text PDF

Twist, a key regulator of epithelial-mesenchymal transition (EMT), plays an important role in the development of a tumorigenic phenotype. Energy metabolism reprogramming (EMR), a newly discovered hallmark of cancer cells, potentiates cancer cell proliferation, survival, and invasion. Currently little is known about the effects of Twist on tumor EMR.

View Article and Find Full Text PDF

Abnormal proliferation is one characteristic of cancer-associated fibroblasts (CAFs), which play a key role in tumorigenesis and tumor progression. Oxidative stress (OS) is the root cause of CAFs abnormal proliferation. ATM (ataxia-telangiectasia mutated protein kinase), an important redox sensor, is involved in DNA damage response and cellular homeostasis.

View Article and Find Full Text PDF

Objective: To investigate the difference of miRNA expression levels of cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs) in human breast cancer microenvironment and its effect on the biological features of CAFs.

Methods: Collagenase-1 was used to digest the cancer and adjacent tissues to isolate CAFs and NFs. The isolated cells were cultured and characterized in purity and biological features.

View Article and Find Full Text PDF