This study investigates a novel approach for analyzing Sit-to-Stand (STS) movements using millimeterwave (mmWave) radar technology, aiming to develop a noncontact, privacy-preserving, and all-day operational solution for healthcare applications. A 60GHz mmWave radar system was employed to collect radar point cloud data from 45 participants performing STS motions. Using a deep learning-based pose estimation model and Inverse Kinematics (IK), we calculated joint angles, segmented STS motions, and extracted clinically relevant features for fall risk assessment.
View Article and Find Full Text PDFRecent research emphasizes the significant regulatory functions of epigenetic alterations and post-translational modifications (PTMs) in the ferroptosis process. Despite the existing volume of literature, there is a remarkable shortage of comprehensive analyses that systematically trace the evolution of research, map key investigative routes, evaluate the current situation of the field, determine central themes, and predict future directions. This study intends to offer a comprehensive summary of the progress achieved during the past 12 years in comprehending how epigenetic modifications and PTMs regulate ferroptosis.
View Article and Find Full Text PDFWorldwide, approximately 1.7 billion people are afflicted with musculoskeletal (MSK) diseases, posing significant health challenges. The introduction of single-cell RNA sequencing (scRNA-seq) technology provides novel insights and approaches to comprehend the onset, progression, and treatment of MSK diseases.
View Article and Find Full Text PDFBackground: Discovering an inhibitor for acyl-CoA synthetase long-chain family member 4 (ACSL4), a protein that triggers cell injury via ferroptosis, presents potential to minimize cellular damage. This study investigates paeonol (PAE), a traditional Chinese herbal medicine, as an ACSL4 inhibitor to prevent chondrocyte ferroptosis and protect against osteoarthritis (OA).
Methods: We conducted experiments using mouse chondrocytes treated with PAE to mitigate ferroptosis induced by Interleukin-1 Beta (IL-1β) or ferric ammonium citrate (FAC), examining intracellular ferroptotic indicators, cartilage catabolic markers, and ferroptosis regulatory proteins.
The introduction of three-dimensional (3D) printing scaffolds has emerged as an effective approach to achieving satisfactory revascularization for bone tissue engineering (BTE). However, there is a notable absence of analytical and descriptive investigations concerning the trajectory, essential research directions, current research scenario, pivotal investigative focuses, and forthcoming perspectives. Hence, the objective of this research is to offer a thorough overview of the advancements achieved in 3D printing structures for vascularized BTE within the last 10 years.
View Article and Find Full Text PDFOsteoarthritis (OA) stands as a prevalent chronic joint pathology, emerging as a leading cause of disability on a global scale. However, the current therapeutic efficacy in OA treatment remains unsatisfactory. Chondrocyte ferroptosis has become to a critical target for OA treatment, while the fabrication of nanomedicines emerges as a promising strategy for OA treatment.
View Article and Find Full Text PDFFall detection, particularly critical for high-risk demographics like the elderly, is a key public health concern where timely detection can greatly minimize harm. With the advancements in radio frequency technology, radar has emerged as a powerful tool for human detection and tracking. Traditional machine learning algorithms, such as Support Vector Machines (SVM) and k-Nearest Neighbors (kNN), have shown promising outcomes.
View Article and Find Full Text PDFThe emergence of artificial intelligence (AI) technology has presented new challenges and opportunities for Traditional Chinese Medicine (TCM), aiming to provide objective assessments and improve clinical effectiveness. However, there is a lack of comprehensive analyses on the research trajectory, key directions, current trends, and future perspectives in this field. This research aims to comprehensively update the progress of AI in TCM over the past 24 years, based on data from the Web of Science database covering January 1, 2000, to March 1, 2024.
View Article and Find Full Text PDFIn this paper, we propose mmPose-FK, a novel millimeter wave (mmWave) radar-based pose estimation method that employs a dynamic forward kinematics (FK) approach to address the challenges posed by low resolution, specularity, and noise artifacts commonly associated with mmWave radars. These issues often result in unstable joint poses that vibrate over time, reducing the effectiveness of traditional pose estimation techniques. To overcome these limitations, we integrate the FK mechanism into the deep learning model and develop an end-to-end solution driven by data.
View Article and Find Full Text PDFBackground: Osteoarthritis (OA) is a disabling and highly prevalent condition affecting millions worldwide. Recently discovered, disulfidptosis represents a novel form of cell death induced by the excessive accumulation of cystine. Despite its significance, a systematic exploration of disulfidptosis-related genes (DRGs) in OA is lacking.
View Article and Find Full Text PDFOver the last decade, significant advancements have been made in breast-conserving surgery (BCS) for breast cancer. However, there is a lack of analytical and descriptive investigations on the trajectory, essential research directions, current research scenario, pivotal investigative focuses, and forthcoming perspectives. The objective of this research is to provide a thorough update on the progress made in BCS for breast cancer over the preceding decade.
View Article and Find Full Text PDFPurpose: Over the past 24 years, significant advancements have been made in applying artificial intelligence (AI) to musculoskeletal (MSK) diseases. However, there is a lack of analytical and descriptive investigations on the trajectory, essential research directions, current research scenario, pivotal focuses, and future perspectives. This research aims to provide a thorough update on the progress in AI for MSK diseases over the last 24 years.
View Article and Find Full Text PDFFront Bioeng Biotechnol
April 2024
During the past decade, mounting evidence has increasingly linked programmed cell death (PCD) to the progression and development of osteoarthritis (OA). There is a significant need for a thorough scientometric analysis that recapitulates the relationship between PCD and OA. This study aimed to collect articles and reviews focusing on PCD in OA, extracting data from January 1st, 2013, to October 31st, 2023, using the Web of Science.
View Article and Find Full Text PDFIn the past 11 years, there has been a surge in studies exploring the regulatory effect of Traditional Chinese Medicine (TCM) on ferroptosis. However, a significant gap persists in comprehensive scientometric analysis and scientific mapping research, especially in tracking the evolution, primary contributors, and emerging research focal points. This study aims to comprehensively update the advancements in targeting ferroptosis with various TCMs during the previous 11 years.
View Article and Find Full Text PDFOver the past 11 years, mounting evidence has suggested a significant association between ferroptosis and the development and progression of musculoskeletal (MSK) diseases, such as osteoporosis and osteoarthritis. However, a comprehensive bibliometric analysis summarizing the relationship between ferroptosis and MSK diseases is currently lacking. The present study collected articles and reviews on the topic of ferroptosis in MSK diseases.
View Article and Find Full Text PDFAs the pace of research on nanomedicine for musculoskeletal (MSK) diseases accelerates, there remains a lack of comprehensive analysis regarding the development trajectory, primary authors, and research focal points in this domain. Additionally, there's a need of detailed elucidation of potential research hotspots. The study gathered articles and reviews focusing on the utilization of nanoparticles (NPs) for MSK diseases published between 2013 and 2023, extracted from the Web of Science database.
View Article and Find Full Text PDFIntroduction/aims: Many small-sized, single-center preclinical studies have investigated the benefits of introducing stem cells into the interior of nerve conduit. The aims of this meta-analysis are to review and contrast the effects of various types of stem cells in in vivo models used to reconstruct peripheral nerve injuries (PNIs) and to assess the reliability and stability of the available evidence.
Methods: A systematic search was conducted using Cochrane Library, Embase, PubMed, and Web of Science to identify studies conducted from January 1, 2000, to September 21, 2022, and investigate stem cell therapy in peripheral nerve reconstruction animal models.
Osteoarthritis (OA) represents the foremost degenerative joint disease observed in a clinical context. The escalating issue of population aging significantly exacerbates the prevalence of OA, thereby imposing an immense annual economic burden on societies worldwide. The current therapeutic landscape falls short in offering reliable pharmaceutical interventions and efficient treatment methodologies to tackle this growing problem.
View Article and Find Full Text PDFPurpose: Recent scientific reports have revealed a close association between ferroptosis and the occurrence and development of osteoarthritis (OA). Nevertheless, the precise mechanisms by which ferroptosis influences OA and how to hobble OA progression by inhibiting chondrocyte ferroptosis have not yet been fully elucidated. This study aims to conduct a comprehensive systematic review (SR) to address these gaps.
View Article and Find Full Text PDF