Publications by authors named "Sixue Dong"

Purpose: To establish and validate a delta-radiomics-based model for predicting progression-free survival (PFS) in patients with locoregionally advanced nasopharyngeal carcinoma (LA-NPC) following induction chemotherapy (IC).

Methods And Materials: A total of 250 LA-NPC patients (training cohort: n = 145; validation cohort: n = 105) were enrolled. Radiomic features were extracted from MRI scans taken before and after IC, and changes in these features were calculated.

View Article and Find Full Text PDF

Purpose: The present study aimed to develop a porous structure with plug-ins (PSP) to broaden the Bragg peak width (BPW, defined as the distance in water between the proximal and distal 80% dose) of the carbon ion beam while maintaining a sharp distal falloff width (DFW, defined as the distance along the beam axis where the dose in water reduces from 80% to 20%).

Methods: The binary voxel models of porous structure (PS) and PSP were established in the Monte Carlo code FLUKA and the corresponding physical models were manufactured by 3D printing. Both experiment and simulation were performed for evaluating the modulation capacity of PS and PSP.

View Article and Find Full Text PDF

Background: Monte Carlo (MC) code FLUKA possesses widespread usage and accuracy in the simulation of particle beam radiotherapy. However, the conversion from computer-aided design (CAD) mesh format models to FLUKA readable geometries could not be implemented directly and conveniently. A simple method was required to be developed.

View Article and Find Full Text PDF

Purpose: To quantify the influence of beam optics asymmetric distribution on dose.

Methods: Nine reference cubic targets and corresponding plans with modulation widths (M) of 3, 6, and 9 cm and with center depths (CDs) of 6, 12, and 24 cm were generated by the treatment planning system (TPS). The Monte Carlo code FLUKA was used for simulating the dose distribution from the aforementioned original plans and the dose perturbation by varying ±5%, ±15%, ±20%, ±25%, and ±40% in spot full width half maximum to the X-direction while keeping consistent in the Y-direction.

View Article and Find Full Text PDF