A medium-carbon low-alloy steel was prepared via the asymmetric rolling process with different ratios of upper and down roll velocities. Subsequently, the microstructure and mechanical properties were explored by using SEM, EBSD, TEM, tensile tests and nanoindentation. The results show that asymmetrical rolling (ASR) can significantly improve strength while retaining good ductility compared with conventional symmetrical rolling.
View Article and Find Full Text PDFThe present study investigates the morphological evolution of carbonitrides and the effect of these precipitates on grain boundary pinning during pseudo-carburizing a Nb-Ti-Al microalloyed steel. The result indicated that three kinds of complex precipitates with different morphologies containing Nb, Ti, and Al respectively were observed in samples austenitized at different temperatures and times. The NbC and TiN precipitates played an important role in pinning grain boundaries and suppressing the growth of austenite grains, relying on the high thermal stability of TiN precipitates and small size of NbC precipitates.
View Article and Find Full Text PDF