The exposure of protein molecules to interfaces may cause protein aggregation and particle formation in protein formulations, especially hydrophobic interfaces, which may promote protein aggregation in solution. In this study, we found that modification of the surface properties by application of a hydrophobic Octadecyltrichlorosilane (OTS) could reduce the generation of protein aggregates and particles in protein solution induced by fluid shear. A stable protein adsorption layer was formed at the hydrophobic interface through the strong hydrophobic interaction between the protein and hydrophobic surface, which could prevent the aggregated protein from falling off into the bulk solution to form subvisible particles and insoluble protein aggregates.
View Article and Find Full Text PDFNeural stem cells (NSCs) proliferation and differentiation rely on proper expression and posttranslational modification of transcription factors involved in the determination of cell fate. Further characterization is needed to connect modifying enzymes with their transcription factor substrates in the regulation of these processes. Here, we demonstrated that the inhibition of KAT2A, a histone acetyltransferase, leads to a phenotype of small eyes in the developing embryo of zebrafish, which is associated with enhanced proliferation and apoptosis of NSCs in zebrafish eyes.
View Article and Find Full Text PDFJ Mol Neurosci
January 2018
Neural crest (NC) cells are a multipotent cell population with powerful migration ability during development. C-X-C chemokine receptor type 4 (CXCR4) is a chemokine receptor implicated to mediate NC migration in various species, whereas the underlying mechanism is not well documented yet. PAX3 is a critical transcription factor for the formation of neural crest and the migration and differentiation of NCs.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2017
PAX3 functions at the nodal point in neural stem cell maintenance and differentiation. Using bioinformatics methods, we identified PAX3 as a potential regulator of β-Tubulin-III (TUBB3) gene transcription, and the results indicated that PAX3 might be involved in neural stem cell (NSC) differentiation by orchestrating the expression of cytoskeletal proteins. In the present study, we reported that PAX3 could inhibit the differentiation of NSCs and the expression of TUBB3.
View Article and Find Full Text PDF