Publications by authors named "Sixia Xiao"

Neutralizing monoclonal antibodies hold great potential for prevention of human immunodeficiency virus (HIV) acquisition. IgG is the most abundant antibody in human serum, has a long half-life, and potent effector functions, making it a prime candidate for an HIV prevention therapeutic. We combined Positron Emission Tomography imaging and fluorescent microscopy of Cu-labeled, photoactivatable-green fluorescent protein HIV (PA-GFP-BaL) and fluorescently labeled HGN194 IgG1 to determine whether intravenously instilled IgG influences viral interaction with mucosal barriers and viral penetration in colorectal tissue 2 h after rectal viral challenge.

View Article and Find Full Text PDF

Infection with the novel coronavirus, SARS-CoV-2, results in pneumonia and other respiratory symptoms as well as pathologies at diverse anatomical sites. An outstanding question is whether these diverse pathologies are due to replication of the virus in these anatomical compartments and how and when the virus reaches those sites. To answer these outstanding questions and study the spatiotemporal dynamics of SARS-CoV-2 infection a method for tracking viral spread is needed.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) vaccines have not been successful in clinical trials. Dimeric IgA (dIgA) in the form of secretory IgA is the most abundant antibody class in mucosal tissues, making dIgA a prime candidate for potential HIV vaccines. We coupled Positron Emission Tomography (PET) imaging and fluorescent microscopy of 64Cu-labeled, photoactivatable-GFP HIV (PA-GFP-BaL) and fluorescently labeled dIgA to determine how dIgA antibodies influence virus interaction with mucosal barriers and viral penetration in colorectal tissue.

View Article and Find Full Text PDF

The failure of once promising target-specific therapeutic strategies often arises from redundancies in gene expression pathways. Even with new melanoma treatments, many patients are not responsive or develop resistance, leading to disease progression in terms of growth and metastasis. We previously discovered that the transcription factors ETS1 and PAX3 drive melanoma growth and metastasis by promoting the expression of the MET receptor.

View Article and Find Full Text PDF

Yes Associated Protein 1 (YAP) and Transcriptional coactivator with PDZ-Binding Motif (TAZ) have gained notoriety for their ability to drive tumor initiation and progression in a wide variety of cancers, including melanoma. YAP and TAZ act as drivers of melanoma through its interaction with the TEAD family of transcription factors. Verteporfin is a benzoporphyrin derivative that is used clinically for photodynamic treatment of macular degeneration.

View Article and Find Full Text PDF