This study investigated the batch stability of egg white peptides (EWPs) during the enzymatic hydrolysis process, and confirmed the potential application of four crucial four peptides inoxidative damage repair. The results revealed that different batches of EWPs had good stability relating to antioxidant activity. With a similar sequence to confirmed antioxidant peptides, four EWPs (QMDDFE, WDDDPTD, DEPDPL, and FKDEDTQ) were identified withhigh repetition rates, and their potential to repair oxidative damage was investigated.
View Article and Find Full Text PDFAlcoholic liver disease (ALD) is a serious health threat. Soybean meal peptide (SMP) supplementation may protect against this damage; however, the potential mechanism underlying the specific sequence of SMPs is unclear. Protein-protein interaction and proteomic analyses are effective methods for studying functional ingredients in diseases.
View Article and Find Full Text PDFBioactive peptides have been shown to affect cell membrane fluidity, which is an important indicator of the cell membrane structure and function. However, the underlying mechanism of egg white-derived bioactive peptide regulation of cell membrane fluidity has not been elucidated yet. The cell membrane fluidity was investigated by giant unilamellar vesicles in the present study.
View Article and Find Full Text PDFImpaired intestinal barrier function can impede the digestion and absorption of nutrients and cause a range of metabolic disorders, which are the main causes of intestinal disease. Evidence suggests that proper dietary protein intake can prevent and alleviate intestinal diseases. Egg white protein (EWP) has received considerable attention, because of its high protein digestibility and rich amino acid composition.
View Article and Find Full Text PDFThe development and progression of colitis would detrimentally destroy the intestine barrier. However, there remains a paucity of evidence on whether ovalbumin (OVA) can be used as a nutritional food protein to repair the intestinal barrier. In this study, the repairing mechanism of OVA on intestinal barrier was thoroughly investigated by gut microbiota and untargeted metabolomics techniques.
View Article and Find Full Text PDFIntroduction: Fermented egg-milk peptides (FEMPs) could enhance the colon-intestinal barrier and upgrade the expression of zonula occludens-1 and mucin 2. Besides, the underlying biological mechanism and the targets FEMPs could regulate were analyzed in our study.
Methods: Herein, the immunofluorescence technique and western blot were utilized to evaluate the repair of the intestinal barrier.
Fermented egg-milk peptides (FEMPs) could alleviate the symptoms of inflammatory diseases but the underlying regulating mechanism of effective ingredients is unclear now. Our research was designed to confirm the protective function of FEMP, then analyze the potential targets and pathways that could be regulated by digested FEMP (dFEMP). The results showed that FEMP could ease the inflammatory symptoms in the colon, repair the damage of inflammation, and decrease the level of pro-inflammatory cytokines (decreased by 31.
View Article and Find Full Text PDFThe Maillard reaction reduces the gastrointestinal digestibility of ovalbumin (OVA) in vitro. However, the regulatory effects of OVA and its Maillard reaction products (MRPs) on gut microbiota disorders remain unknown. In this study, the influence of OVA and its MRPs on the modulation of gut microbiota in mice with dextran sulfate sodium (DSS)-induced colitis was investigated.
View Article and Find Full Text PDFFermented egg-milk beverage (FEMB) can alleviate the symptoms of intestinal diseases by regulating intestinal flora and supplying nutrition. This study investigated the protective effect of FEMB on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. The results showed that FEMB relieved the UC mice's pathological abnormalities and colonic inflammation, and restructured the intestinal flora composition simultaneously.
View Article and Find Full Text PDFGlycation can improve the functional properties of protein. However, in vitro and animal studies have shown that glycation induced lysine blockage and impaired protein digestibility. This study aimed to explore the effects of different glycation degree on the structure and digestive characteristics of ovalbumin.
View Article and Find Full Text PDF