Multivariate time series data is becoming increasingly ubiquitous in various fields such as servers, industrial applications, and healthcare. However, detecting anomalies in such data is challenging due to its complex time-dependent, high-dimensional, and label scarcity. Aiming at this problem, this paper proposes an Attention Factorization Normalizing Flow (AFNF) algorithm for unsupervised multivariate time series anomaly detection.
View Article and Find Full Text PDFThe rapid development of smart factories, combined with the increasing complexity of production equipment, has resulted in a large number of multivariate time series that can be recorded using sensors during the manufacturing process. The anomalous patterns of industrial production may be hidden by these time series. Previous LSTM-based and machine-learning-based approaches have made fruitful progress in anomaly detection.
View Article and Find Full Text PDF