Publications by authors named "Siwarutt Boonyarattanakalin"

Enhancement of local nitric oxide (NO) concentration is important for the effectiveness of an adjuvant and for both innate and adaptive immunological responses. Currently, the information on the NO-inducing activities of lipoarabinomannan (LAM) glycan motifs on Mycobacterium tuberculosis (Mtb) is not possibly available. Thus, detailed studies on the structure-activity relationship of discrete LAM glycan motifs could provide valuable information towards the development of adjuvants and vaccines against Mtb.

View Article and Find Full Text PDF

Lipomannan (LM), a glycophospholipid found on the cell surface of mycobacteria, involves the virulence and survival in host cells. However, there is little to no information on how exactly mannan alignment, including the number of mannose units and the branched motif of LM, affects protein engagement during host-pathogen interactions. In this study, we synthesized the exact substructures of the LM glycans that consist of an α(1,6) mannan core, with and without the complete α(1,2) mannose branching, and comparatively studied their protein-carbohydrate interactions.

View Article and Find Full Text PDF

A rapid synthesis of the α(1→5) arabinofuranan polysaccharides, found on the outer surface of Mycobacterium tuberculosis (Mtb), is achieved by a regio- and stereocontrolled ring opening polymerization of β-d-arabinofuranose-1,2,5-orthobenzoate. The robust polymerization reaction allows the incorporation of an amine linker, which was used to conjugate with protein tetanus toxoid (TT) to further investigate its adjuvant activities. The synthetic arabinan, which is the glycan on the non-reducing end of Mtb lipoarabinomannan (LAM), was evaluated for its immunological properties in vitro and in vivo.

View Article and Find Full Text PDF

The synthetic lipomannan (LM) α(1,6)mannans, already equipped with an amine linker on the reducing end, are rapidly synthesized in a size-, regio-, and stereocontrolled reaction. The size of the mannans is regulated through the concentration of the linker, applied during the controlled ring-opening polymerization reaction. The versatile amine linker enables a variety of glycan conjugations.

View Article and Find Full Text PDF

Surface components of Mycobacterium tuberculosis (Mtb) play crucial roles in modulating host immune responses. Thorough understandings of immunological properties of the Mtb's surface components are essential for the development of tuberculosis treatment and prevention. Unfortunately, the accessibility to the molecules on the surface of Mtb is limited by the structural complexity due to their various macromolecular nature and the hazard of culturing Mtb.

View Article and Find Full Text PDF

Investigations into novel bacterial drug targets and vaccines are necessary to overcome tuberculosis. Lipomannan (LM), found on the surface of Mycobacterium tuberculosis (Mtb), is actively involved in the pathogenesis and survival of Mtb. Here, we report for the first time a rapid synthesis and biological activities of an LM glycan backbone, α(1-6)mannans.

View Article and Find Full Text PDF

  This study evaluates the technical feasibility of using microwave radiation for the rapid treatment of human feces. Human feces of 1000 g were radiated with a commercially available household microwave oven (with rotation) at different exposure time lengths (30, 50, 60, 70, and 75 mins) and powers (600, 800, and 1000 W). Volume reduction over 90% occurred after 1000 W microwave radiation for 75 mins.

View Article and Find Full Text PDF

Tuberculosis (TB) remains a major health problem worldwide. Understanding the interactions between the surface components of Mycobacterium tuberculosis (Mtb), the main causative agent of TB, with host immune response will be critical for developments of effective treatments and prevention of TB. Chemically defined mimics of the bacterial envelope components serve as important tools for biological studies of the bacterial interactions with mammalian hosts.

View Article and Find Full Text PDF

We describe a novel platform on which to study carbohydrate-protein interactions based on ruthenium(II) glycodendrimers as optical and electrochemical probes. Using the prototypical concanavalin A (ConA)-mannose lectin-carbohydrate interaction as an example, oligosaccharide concentrations were electrochemically monitored. The displacement of the Ru(II) complex from lectin-functionalized gold surfaces was repeatedly regenerated.

View Article and Find Full Text PDF

The emergence of multidrug-resistant tuberculosis (TB) and problems with the BCG tuberculosis vaccine to protect humans against TB have prompted investigations into alternative approaches to combat this disease by exploring novel bacterial drug targets and vaccines. Phosphatidylinositol mannosides (PIMs) are biologically important glycoconjugates and represent common essential precursors of more complex mycobacterial cell wall glycolipids including lipomannan (LM), lipoarabinomannan (LAM), and mannan capped lipoarabinomannan (ManLAM). Synthetic PIMs constitute important biochemical tools to elucidate the biosynthesis of this class of molecules, to reveal PIM interactions with host cells, and to investigate the function of PIMs as potential antigens and/or adjuvants for vaccine development.

View Article and Find Full Text PDF

Glycosyl tricyclic orthoesters provide a versatile basis for the efficient generation of glycosyl phosphates, which are used in the automated synthesis of lipomannan backbone alpha(1-6) hexa-mannoside.

View Article and Find Full Text PDF

Extracellular domains of internalizing cell surface receptors are often targeted to enable drug delivery through the mechanism of receptor-mediated endocytosis. To circumvent natural receptors required for endocytic drug delivery, we constructed a small artificial cell surface receptor comprising the membrane anchor -alkyl-3β-cholesterylamine linked to a D-Phe-D-Ala motif that binds the glycopeptide antibiotic vancomycin. By mimicking membrane association and trafficking properties of cholesterol, this cholesterol-derived synthetic receptor functions as a prosthetic molecule, inserting into plasma membranes of mammalian cells, and rapidly cycling between the cell surface and intracellular endosomes.

View Article and Find Full Text PDF

Binding of ligands to macromolecular receptors on the surface of mammalian cells often results in ligand uptake through receptor-mediated endocytosis. Certain human leukocytes and epithelial cells express Fc receptors (FcRs) that bind and internalize antibodies through this mechanism. To mimic this process, we synthesized an artificial FcR comprising the membrane anchor N-alkyl-3beta-amino-5alpha-cholestane linked to a disulfide-constrained cyclic peptide, termed FcIII, known to exhibit high affinity and specificity for the Fc region of human IgG.

View Article and Find Full Text PDF

[structure: see text] Fluorescent small molecules are powerful tools for exploring cellular biology. As a more hydrophobic, photostable, and less pH-sensitive alternative to fluorescein, we synthesized Pennsylvania Green, a bright, monoanionic fluorophore related to Oregon Green and Tokyo Green. Comparison of membrane probes comprising N-alkyl-3beta-cholesterylamine linked to 4-carboxy-Tokyo Green (pK(a) approximately 6.

View Article and Find Full Text PDF

Cell-penetrating peptides and proteins (CPPs) are important tools for the delivery of impermeable molecules into living mammalian cells. To enable these cells to internalize proteins fused to common oligohistidine affinity tags, we synthesized an artificial cell surface receptor comprising an N-alkyl derivative of 3beta-cholesterylamine linked to the metal chelator nitrilotriacetic acid (NTA). This synthetic receptor inserts into cellular plasma membranes, projects NTA headgroups from the cell surface, and rapidly cycles between the plasma membrane and intracellular endosomes.

View Article and Find Full Text PDF

Receptors on the surface of mammalian cells promote the uptake of cell-impermeable ligands by receptor-mediated endocytosis. To mimic this process, we synthesized small molecules designed to project anti-dinitrophenyl antibody-binding motifs from the surface of living Jurkat lymphocytes. These synthetic receptors comprise N-alkyl derivatives of 3beta-cholesterylamine as the plasma membrane anchor linked to 2,4-dinitrophenyl (DNP) and structurally similar fluorescent 7-nitrobenz-2-oxa-1,3-diazole (NBD) headgroups.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiont3g331ocmrii9nph7js72rnfplscndip): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once