Publications by authors named "Siwaporn Meejoo Smith"

Glycerol, a by-product of biodiesel production through transesterification, presents an opportunity for biodiesel industries to transform surplus glycerol into high-value chemical products. This study focuses on the development of a series of propyl sulfonic acid functionalized (PrSOH) SBA-15 catalysts, synthesized by direct synthesis of 3-mercaptopropyltrimethoxysilane (MPTMS) and tetraethoxysilane (TEOS) in an acidic medium. The catalysts were evaluated for acetylation of glycerol with acetic acid under conditions optimized through response surface methodology.

View Article and Find Full Text PDF
Article Synopsis
  • * Zn5 facilitates the conversion processes like transesterification and esterification, and can handle oil with up to 10% acidity without forming soaps.
  • * Although Zn5 cannot be recycled due to its instability during reactions, the resulting composites (Zn5/ZnP) can still produce high FAME yields in repeated cycles, making it useful for biodiesel production under specific conditions.
View Article and Find Full Text PDF

The effects of palm oil (PO) and coconut oil (CO) additions on the physicochemical properties and in vitro starch digestibility of extruded pineapple stem starch (PSS) were studied. The native PSS was adjusted to 15% moisture and blended with PO or CO in amounts of 5 and 10% (/ of starch), while the control sample without added oil was adjusted to 25% moisture before being extruded with a twin-screw extruder at a maximum barrel temperature of 140 °C. Due to the lubricating effect, the added oils reduced the expansion ratio of the extrudates, which led to an increase in cell wall thickness, bulk density, hardness, and water adsorption index, but to a reduction in the water solubility index, especially with 10% oils.

View Article and Find Full Text PDF

By using methyl orange (MO) removal as a model reaction, the best temperatures for processing eggshells are 750 °C and above to obtain biobased CaO materials, a raw material for producing CuCa hydroxy double salt (HDS) materials with high efficiency in treatments of highly polluted wastewater (the initial concentration of MO is 500 ppm). Characterization techniques employed in this study include power X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, nitrogen adsorption-desorption analysis, and the colorimetric method, as well as energy-dispersive X-ray, infrared-, and electron spin resonance spectroscopies. Complete MO removal and high chemical oxygen demand (COD) efficiencies (>90%) can be achieved after 3 min treatments of the aqueous MO with the calcined eggshell-derived CuCa HDS materials.

View Article and Find Full Text PDF

The investigations of temperature-dependent electrical properties in graphitic carbon nitride (g-CN) have been largely performed at/below room temperature on devices commonly fabricated by vacuum techniques, leaving the gap to further explore its behaviors at high-temperature. We reported herein the temperature dependence (400 → 35 °C) of alternating current (AC) electrical properties in bulk- and nanosheet-g-CN compacts simply prepared by pelletizing the powder. The bulk sample was synthesized the direct heating of urea, and the subsequent HNO-assisted thermal exfoliation yielded the nanosheet counterpart.

View Article and Find Full Text PDF

Pineapple materials sourced from agricultural waste have been employed to process novel bio-degradable rigid composite foams. The matrix for the foam consisted of starch extracted from pineapple stem, known for its high amylose content, while the filler comprised non-fibrous cellulosic materials sourced from pineapple leaf. In contrast to traditional methods that involve preparing a batter, this study adopted a unique approach where the starch gel containing glycerol were first formed using a household microwave oven, followed by blending the filler into the gel using a two-roll mill.

View Article and Find Full Text PDF
Article Synopsis
  • A novel method was developed to recycle low-value eggshell waste by creating a CaFeO semiconductor with a narrow band gap (2.81 eV) through hydrothermal treatment in ferric salt solutions, optimizing the Fe loading to 30 wt%.
  • The resulting CaFeO material acted as an effective photocatalyst, achieving an 86.1% removal of the herbicide 2-chlorophenol from water after 180 minutes of UV-visible light exposure, with a reuse efficiency of 70.5% even in subsequent cycles.
  • The study demonstrated that using eggshells in creating CaFeO not only helps in environmental remediation by degrading pollutants but also exemplifies the advantages of recycling materials in science.
View Article and Find Full Text PDF

In order to reduce our dependence on nonrenewable plastics and solve the problem of non-biodegradable plastic waste, there has been much attention paid to the development of biodegradable plastics from natural resources. Starch-based materials have been widely studied and developed for commercial production, primarily from corn and tapioca. However, the use of these starches could generate food security problems.

View Article and Find Full Text PDF

Plastic waste poses a significant challenge for the environment, particularly smaller plastic products that are often difficult to recycle or collect. In this study, we developed a fully biodegradable composite material from pineapple field waste that is suitable for small-sized plastic products that are difficult to recycle, such as bread clips. We utilized starch from waste pineapple stems, which is high in amylose content, as the matrix, and added glycerol and calcium carbonate as the plasticizer and filler, respectively, to improve the material's moldability and hardness.

View Article and Find Full Text PDF

In this study, the physicochemical, rheological, in vitro starch digestibility, and emulsifying properties of starch extracted from pineapple stem agricultural waste were investigated in comparison with commercial cassava, corn, and rice starches. Pineapple stem starch had the highest amylose content (30.82%), which contributed to the highest pasting temperature (90.

View Article and Find Full Text PDF

In this study, biodegradable starch film was developed from pineapple stem waste as a substitute for non-biodegradable petroleum-based films for single-use applications where strength is not too demanding. High amylose starch from a pineapple stem was used as the matrix. Glycerol and citric acid were used as additives to adjust the ductility of the material.

View Article and Find Full Text PDF

Layered hydroxyl salts (LHS) is a promising catalyst in the field of methanolysis (transesterification and esterification reactions) of oil feedstocks. The catalytic activity of the catalyst can be enhanced with heat treatment. The present study investigated the relationship between thermal stability of the layered Zn hydroxide nitrate (ZHN), their acid-base properties, and the catalytic conversion of oil feedstocks to methyl ester.

View Article and Find Full Text PDF

Instead of using finite petroleum-based resources and harmful additives, starch can be used as a biodegradable, low-cost, and non-toxic ingredient for green adhesives. This work employs KPO catalyzed transesterifications of cassava starch and methyl laurate at varying reaction times (1-10 h), resulting in the enhanced hydrophobicity of starch laurates. At longer reaction times, starch laurates having higher degrees of substitution (DS) were obtained.

View Article and Find Full Text PDF

As a byproduct of bromelain extraction procedures, pineapple stem flour is underutilized. Since water glues derived from gelatinization typically have poor mold resistance, this study aims to produce flour-based value-added products, such as mold-resistant water-based adhesives. To address this issue, this study explored the use of apple cider vinegar (ACV) as a low-cost, non-toxic, commercially available antifungal agent to improve the mold resistance of adhesives.

View Article and Find Full Text PDF

Understanding the fundamentals of transport properties in two-dimensional (2D) materials is essential for their applications in devices, sensors, and so on. Herein, we report the impedance spectroscopic study of carbon nitride nanosheets (CNNS) and the composite with anatase (TiO/CNNS, 20 atom% Ti), including their interaction with atmospheric water. The samples were characterized by X-ray diffraction, N adsorption/desorption, solid state H nuclear magnetic resonance spectroscopy, thermogravimetric analysis, and transmission electron microscopy.

View Article and Find Full Text PDF

In this study, versatile boron-doped graphitic carbon nitride (gCN) incorporated mesoporous SBA-15 (BGS) composite materials were prepared by thermal polycondensation method using boric acid & melamine as a B-gCN source material and SBA-15 as mesoporous support. The prepared BGS composites are utilized sustainably using solar light as the energy source for the continuous flow of photodegradation of tetracycline (TC) antibiotics. This work highlights that the photocatalysts preparation was carried out with an eco-friendly strategy, solvent-free and without additional reagents.

View Article and Find Full Text PDF

This research employed g-CN nanosheets in the hydrothermal synthesis of TiO/g-CN hybrid photocatalysts. The TiO/g-CN heterojunctions, well-dispersed TiO nanoparticles on the g-CN nanosheets, are effective photocatalysts for the degradation of monochlorophenols (MCPs: 2-CP, 3-CP, and 4-CP) which are prominent water contaminants. The removal efficiency of 2-CP and 4-CP reached 87% and 64%, respectively, after treatment of 25 ppm CP solutions with the photocatalyst (40TiO/g-CN, 1 g/L) and irradiation with UV-Vis light.

View Article and Find Full Text PDF

Consumer trends towards environmentally friendly products are driving plastics industries to investigate more benign alternatives to petroleum-based polymers. In the case of adhesives, one possibility to achieve sustainable production is to use non-toxic, low-cost starches as biodegradable raw materials for adhesive production. While native starch contains only hydroxyl groups and has limited scope, chemically modified starch shows superior water resistance properties for adhesive applications.

View Article and Find Full Text PDF

Metal-doped graphitic carbon nitride (MCN) materials have shown great promise as effective photocatalysts for the conversion of acetic acid to carbon dioxide under UV-visible irradiation and are superior to pristine carbon nitride (g-CN CN). In this study, the effects of metal dopants on the physicochemical properties of metal-doped CN samples (Fe-, Cu-, Zn-, FeCu-, FeZn-, and CuZn-doped CN) and their catalytic activity in the photooxidation of acetic acid were investigated and discussed for their correlation, especially on their surface and bulk structures. The materials in the order of highest to lowest photocatalytic activity are FeZn_CN, FeCu_CN, Fe_CN, and Cu_CN (rates of CO evolution higher than for CN), followed by Zn_CN, CuZn_CN, and CN (rates of CO evolution lower than CN).

View Article and Find Full Text PDF

Carbon-based solid acid catalysts were successfully obtained via one-step hydrothermal carbonization (HTC) of water hyacinth (WH) in the presence of p-toluenesulfonic acid (PTSA). Increasing the HTC temperature from 180 to 240 °C resulted in carbonaceous materials with increased sulfur content and less adsorbed water. The material obtained at 220 °C (WH-PTSA-220) contains the highest amount of acid sites and promotes the highest initial rate of two transformations, that is, methanolysis of oleic acid and dehydration of xylose to furfural.

View Article and Find Full Text PDF

Anthocyanin, which is soluble in water and released into sugar steam during extraction, was investigated in this study. The anthocyanin content in refined sugar, plantation white sugar, soft brown sugar and raw sugar was determined using electron spin resonance (ESR) spectroscopy, which was operated at room temperature, and compared with spectra from standard anthocyanin. The ESR spectra of red and violet anthocyanins was predominantly g ≈ 2.

View Article and Find Full Text PDF

Fine-tuning the nanoscale structure and morphology of nanostructured lipid carriers (NLCs) is central to improving drug loading and stability of the particles. The role of surfactant charge on controlling the structure, the physicochemical properties and the stability of NLCs has been investigated using three surfactant types (cationic, anionic, non-ionic), and mixed surfactants. Either one, a mixture of two, or a mixture of three surfactants were used to coat the NLCs, with these classified as one, two and three surfactant systems, respectively.

View Article and Find Full Text PDF

Calcined bovine bone waste was employed to catalyze the transesterification reaction between soybean oil and methanol. The influence of various conditions on the efficiency of the transesterification was studied i.e.

View Article and Find Full Text PDF

The stabilization of Cr(V) by biological 1,2-diolato ligands, including carbohydrates, glycoproteins, and sialic acid derivatives, is likely to play a crucial role in the genotoxicity of Cr(VI) and has also been implicated in the antidiabetic effect of Cr(III). Previously, such complexes have been observed by electron paramagnetic resonance (EPR) spectroscopy in living cells or animals, treated with carcinogenic Cr(VI), as well as in numerous model systems, but attempts to isolate them have been elusive. Recently, the first crystal structure of a Cr(V) complex with cis-1,2-cyclohexanediol (1, a close structural analogue of carbohydrates) has been reported.

View Article and Find Full Text PDF

Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of gamma-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 812 as liquid lipid.

View Article and Find Full Text PDF